Remaining useful life prediction of bearings with attention-awared graph convolutional network

计算机科学 稳健性(进化) 图形 特征工程 模式识别(心理学) 协方差 人工智能 数据挖掘 机器学习 算法 深度学习 理论计算机科学 数学 统计 生物化学 化学 基因
作者
Yupeng Wei,Dazhong Wu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:58: 102143-102143 被引量:11
标识
DOI:10.1016/j.aei.2023.102143
摘要

Graph Convolutional Networks (GCNs) have recently been used to predict the remaining useful life (RUL) of bearings due to its effectiveness in revealing correlations in condition monitoring data. However, traditional GCNs use a single graph only, either a temporal-correlated graph or a feature-correlated graph without considering both temporal and feature correlations of condition monitoring data. Additionally, traditional GCNs rely heavily on pre-defined graphs to aggregate correlated features. However, the topology of these pre-defined graphs may vary depending on a pre-defined threshold for cosine similarity or covariance which might affect prediction accuracy and robustness. To address these issues, we introduce a spectral graph convolutional operation that can handle both temporal-correlated and feature-correlated graphs, which allows one to consider both the temporal and feature correlations simultaneously. Moreover, we introduce a self-attention mechanism to construct the temporal-correlated and feature-correlated graphs automatically without defining a threshold. Such a mechanism allows the predictive model to learn graphs automatically during training so that the prediction accuracy and robustness can be significantly improved. The proposed method is demonstrated on two bearing datasets, and the experimental results have shown that it outperforms both traditional GCNs and other deep-learning methods in predicting RUL of bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助1⑩采纳,获得20
2秒前
余额发布了新的文献求助10
2秒前
lym97完成签到 ,获得积分10
2秒前
苏曼青完成签到,获得积分10
3秒前
tonight发布了新的文献求助10
5秒前
默默问晴完成签到,获得积分10
7秒前
supergdb完成签到,获得积分10
7秒前
8秒前
djiwisksk66应助AoAoo采纳,获得10
9秒前
小圆发布了新的文献求助10
9秒前
zhikaiyici完成签到,获得积分10
10秒前
12秒前
12秒前
哔哔发布了新的文献求助10
13秒前
log发布了新的文献求助10
13秒前
轻松迎夏qqa关注了科研通微信公众号
13秒前
姿姿发布了新的文献求助10
13秒前
小蘑菇应助榴莲姑娘采纳,获得10
13秒前
Devon完成签到,获得积分10
14秒前
14秒前
铭铭就完成签到 ,获得积分10
14秒前
14秒前
Dada应助微笑的寒珊采纳,获得10
15秒前
16秒前
ha发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
斯文败类应助Angenstern采纳,获得10
18秒前
19秒前
arcremnant完成签到,获得积分10
19秒前
好多西红柿呀完成签到,获得积分10
20秒前
哔哔完成签到,获得积分20
20秒前
星辰大海应助霏孔采纳,获得10
20秒前
丰富幻悲发布了新的文献求助10
20秒前
在水一方应助科研搬运工采纳,获得10
21秒前
星河在眼里完成签到,获得积分10
22秒前
金鑫鑫完成签到,获得积分10
22秒前
7z发布了新的文献求助10
22秒前
yuM完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951130
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082541
捐赠科研通 3226963
什么是DOI,文献DOI怎么找? 1784094
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801089