Remaining useful life prediction of bearings with attention-awared graph convolutional network

计算机科学 稳健性(进化) 图形 特征工程 模式识别(心理学) 协方差 人工智能 数据挖掘 机器学习 算法 深度学习 理论计算机科学 数学 统计 基因 生物化学 化学
作者
Yupeng Wei,Dazhong Wu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102143-102143 被引量:11
标识
DOI:10.1016/j.aei.2023.102143
摘要

Graph Convolutional Networks (GCNs) have recently been used to predict the remaining useful life (RUL) of bearings due to its effectiveness in revealing correlations in condition monitoring data. However, traditional GCNs use a single graph only, either a temporal-correlated graph or a feature-correlated graph without considering both temporal and feature correlations of condition monitoring data. Additionally, traditional GCNs rely heavily on pre-defined graphs to aggregate correlated features. However, the topology of these pre-defined graphs may vary depending on a pre-defined threshold for cosine similarity or covariance which might affect prediction accuracy and robustness. To address these issues, we introduce a spectral graph convolutional operation that can handle both temporal-correlated and feature-correlated graphs, which allows one to consider both the temporal and feature correlations simultaneously. Moreover, we introduce a self-attention mechanism to construct the temporal-correlated and feature-correlated graphs automatically without defining a threshold. Such a mechanism allows the predictive model to learn graphs automatically during training so that the prediction accuracy and robustness can be significantly improved. The proposed method is demonstrated on two bearing datasets, and the experimental results have shown that it outperforms both traditional GCNs and other deep-learning methods in predicting RUL of bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一朵梅花完成签到,获得积分10
1秒前
咕噜仔完成签到,获得积分10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得30
2秒前
Hello应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
LewisAcid应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
香蕉诗蕊举报Llll求助涉嫌违规
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
打发打发的发到付电费完成签到,获得积分10
3秒前
维奈克拉应助科研通管家采纳,获得20
3秒前
哈哈发布了新的文献求助10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
dew应助fugdu采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得30
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
lilili应助科研通管家采纳,获得10
3秒前
周杰完成签到,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342