Remaining useful life prediction of bearings with attention-awared graph convolutional network

计算机科学 稳健性(进化) 图形 特征工程 模式识别(心理学) 协方差 人工智能 数据挖掘 机器学习 算法 深度学习 理论计算机科学 数学 统计 基因 生物化学 化学
作者
Yupeng Wei,Dazhong Wu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:58: 102143-102143 被引量:11
标识
DOI:10.1016/j.aei.2023.102143
摘要

Graph Convolutional Networks (GCNs) have recently been used to predict the remaining useful life (RUL) of bearings due to its effectiveness in revealing correlations in condition monitoring data. However, traditional GCNs use a single graph only, either a temporal-correlated graph or a feature-correlated graph without considering both temporal and feature correlations of condition monitoring data. Additionally, traditional GCNs rely heavily on pre-defined graphs to aggregate correlated features. However, the topology of these pre-defined graphs may vary depending on a pre-defined threshold for cosine similarity or covariance which might affect prediction accuracy and robustness. To address these issues, we introduce a spectral graph convolutional operation that can handle both temporal-correlated and feature-correlated graphs, which allows one to consider both the temporal and feature correlations simultaneously. Moreover, we introduce a self-attention mechanism to construct the temporal-correlated and feature-correlated graphs automatically without defining a threshold. Such a mechanism allows the predictive model to learn graphs automatically during training so that the prediction accuracy and robustness can be significantly improved. The proposed method is demonstrated on two bearing datasets, and the experimental results have shown that it outperforms both traditional GCNs and other deep-learning methods in predicting RUL of bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助煎饼煎饼采纳,获得10
刚刚
完美世界应助煎饼煎饼采纳,获得10
刚刚
充电宝应助sss采纳,获得10
刚刚
JF123_发布了新的文献求助10
2秒前
楚江南完成签到,获得积分10
2秒前
罗大壮发布了新的文献求助10
2秒前
Bailang完成签到,获得积分10
3秒前
4秒前
5秒前
科研通AI5应助许安采纳,获得10
5秒前
英姑应助生鱼安乐采纳,获得10
6秒前
1GE完成签到,获得积分10
8秒前
小北完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
11秒前
科研通AI6应助梅梅采纳,获得10
11秒前
11秒前
11秒前
小北发布了新的文献求助10
11秒前
12秒前
dktrrrr完成签到,获得积分10
13秒前
14秒前
果称发布了新的文献求助10
14秒前
王淳完成签到 ,获得积分10
14秒前
科研小白发布了新的文献求助50
15秒前
Owen应助2jz采纳,获得10
15秒前
灵长类发布了新的文献求助10
15秒前
生生完成签到 ,获得积分10
16秒前
忧郁的莫茗完成签到,获得积分10
16秒前
吴彦祖发布了新的文献求助10
16秒前
Owen应助ww采纳,获得10
16秒前
Doctor_wan89发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
20秒前
华仔应助哈哈采纳,获得10
21秒前
wp4455777发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924525
求助须知:如何正确求助?哪些是违规求助? 4194571
关于积分的说明 13029123
捐赠科研通 3966454
什么是DOI,文献DOI怎么找? 2173951
邀请新用户注册赠送积分活动 1191426
关于科研通互助平台的介绍 1100971