材料科学
阳极
硅
沉积(地质)
离子
多孔性
化学工程
多孔硅
纳米技术
锂离子电池的纳米结构
电极
冶金
复合材料
有机化学
生物
古生物学
化学
物理化学
工程类
沉积物
作者
Yan Li,Guangyu Chen,Huaixiang Yang,Xiaobing Geng,Zhuo Luo,Chentong Zhang,Liuqing Huang,Xuetao Luo
标识
DOI:10.1021/acsami.3c09561
摘要
The application of photovoltaic (PV) solid waste to the field of lithium-ion batteries is deemed to be an effective solution for waste disposal, which can not only solve the problem of environmental pollution but also avoid the loss of secondary resources. Herein, based on the volatile deposited waste produced by electron beam refining polysilicon, a simple and environmentally friendly method was designed to synthesize P-Si@SiOx/Ag/CN as an anode material for lithium-ion batteries. Remarkably, the presence of silver and the formation of a carbon–nitrogen network can enhance the electrical conductivity of the composite and boost the transport efficiency of lithium ions. Furthermore, the porous Si@SiOx structure is generated by silver-assisted chemical etching (Ag-ACE), and the carbon–nitrogen grid architecture is formed after lyophilization with NaCl as a template, which can jointly provide sufficient buffer space for the volume change of silicon during lithiation/delithiation. Benefitting from these advantages, the P-Si@SiOx/Ag/CN anode exhibits outstanding cycling performance with 759 mA h g–1 over 300 cycles at 0.5 A g–1. Meanwhile, the lithium-ion batteries employing the P-Si@SiOx/Ag/CN anodes present a superior rate capability of 950 mA h g–1 at 2 A g–1 and retain a high reversible specific capacity of 956 mA h g–1 at 1 A g–1 after 50 cycles. This work opens up a new economic strategy for the fabrication of high-performance silicon anodes and affords a promising avenue for the recycling of PV silicon waste.
科研通智能强力驱动
Strongly Powered by AbleSci AI