清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhanced Scalable Graph Neural Network via Knowledge Distillation

可扩展性 计算机科学 推论 机器学习 图形 预处理器 人工智能 理论计算机科学 数据库
作者
Chengyuan Mai,Yaomin Chang,Chuan Chen,Zibin Zheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tnnls.2023.3333846
摘要

Graph neural networks (GNNs) have achieved state-of-the-art performance in various graph representation learning scenarios. However, when applied to graph data in real world, GNNs have encountered scalability issues. Existing GNNs often have high computational load in both training and inference stages, making them incapable of meeting the performance needs of large-scale scenarios with a large number of nodes. Although several studies on scalable GNNs have developed, they either merely improve GNNs with limited scalability or come at the expense of reduced effectiveness. Inspired by knowledge distillation's (KDs) achievement in preserving performances while balancing scalability in computer vision and natural language processing, we propose an enhanced scalable GNN via KD (KD-SGNN) to improve the scalability and effectiveness of GNNs. On the one hand, KD-SGNN adopts the idea of decoupled GNNs, which decouples feature transformation and feature propagation in GNNs and leverages preprocessing techniques to improve the scalability of GNNs. On the other hand, KD-SGNN proposes two KD mechanisms (i.e., soft-target (ST) distillation and shallow imitation (SI) distillation) to improve the expressiveness. The scalability and effectiveness of KD-SGNN are evaluated on multiple real datasets. Besides, the effectiveness of the proposed KD mechanisms is also verified through comprehensive analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
15秒前
陈鹿华完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
32秒前
allrubbish完成签到,获得积分10
33秒前
zyh完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
53秒前
天天快乐应助平常易烟采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
平常易烟发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
龙猫爱看书完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
大雪封山完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
能干的语芙完成签到 ,获得积分10
3分钟前
juan完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
sue发布了新的文献求助20
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661074
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744064
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734518