PI3K/AKT/mTOR通路
神经毒性
蛋白激酶B
羟基多巴胺
神经保护
活力测定
细胞凋亡
化学
细胞生物学
流式细胞术
药理学
分子生物学
生物
生物化学
内分泌学
毒性
多巴胺
有机化学
多巴胺能
作者
Liying Guo,Baoming Qu,Chengyuan Song,Shaowei Zhu,Nianming Gong,Jinhao Sun
标识
DOI:10.1016/j.jad.2022.08.026
摘要
Parkinson's disease (PD) is a neurological disorder. Recently, celastrol (Cel) has been reported to have neuroprotective properties. We investigated the protective effects of Cel on PD in a cell model with 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PC12 cells and further addressed the underlying protective mechanisms of Cel.PC12 cells were treated with 6-OHDA, and Cel was added to the medium at various concentrations. The CCK-8 assay, Hoechst/PI staining, and flow cytometry analysis were performed to detect cellular viability and apoptosis. Mitochondrial membrane potential (MMP) was examined by JC-1 staining. ROS level was quantified by ROS staining. The effects of Cel on the expression of miR-146a and PI3K/Akt/mTOR pathway were then clarified using real-time PCR and Western blotting. Moreover, a miR-146a mimic was synthesized and transfected into PC12 cells to further determine the mechanisms of Cel's neuronal protection against 6-OHDA-induced neurotoxicity.Cel greatly improved cell viability and lessened apoptosis. Flow cytometry showed that Cel especially inhibited early apoptosis. Cel also obviously restored the MMP and decreased ROS level destroyed by 6-OHDA. Moreover, 6-OHDA increased the expression of miR-146a and decreased pAkt/mTOR protein levels, whereas Cel reversed these changes. In particular, miR-146a targeted and inhibited the expression of PI3K, an upstream molecule of Akt/mTOR. Transfection of 6-OHDA-treated neurons with miR-146a mimic notably attenuated Cel's protective effects.There were no animal experiments in our study.Cel exerts neuroprotective activity against 6-OHDA-caused neurotoxicity by regulating miR-146a/PI3K/Akt/mTOR pathway, which provides a potential application of Cel for treating neurodegenerative diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI