清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study

中间性中心性 文献计量学 领域(数学) 计算机科学 中心性 数据科学 可视化 引文分析 引用 人工智能 数据挖掘 图书馆学 数学 组合数学 纯数学
作者
Tom Wu,Yu Duan,Tai Zhang,Wen‐de Tian,Heng Liu,Yang Deng
出处
期刊:Frontiers in bioscience [IMR Press]
卷期号:27 (9) 被引量:16
标识
DOI:10.31083/j.fbl2709254
摘要

Background: The past decade has seen major advances in the use of artificial intelligence (AI) to solve various biomedical problems, including cancer. This has resulted in more than 6000 scientific papers focusing on AI in oncology alone. The expansiveness of this research area presents a challenge to those seeking to understand how it has developed. A scientific analysis of AI in the oncology literature is therefore crucial for understanding its overall structure and development. This may be addressed through bibliometric analysis, which employs computational and visual tools to identify research activity, relationships, and expertise within large collections of bibliographic data. There is already a large volume of research data regarding the development of AI applications in cancer research. However, there is no published bibliometric analysis of this topic that offers comprehensive insights into publication growth, co-citation networks, research collaboration, and keyword co-occurrence analysis for technological trends involving AI across the entire spectrum of oncology research. The purpose of this study is to investigate documents published during the last decade using bibliometric indicators and network visualization. This will provide a detailed assessment of global research activities, key themes, and AI trends over the entire breadth of the oncology field. It will also specifically highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions via network collaboration maps and betweenness centrality metric. This study represents the first global investigation of AI covering the entire cancer field and using several validated bibliometric techniques. It should provide valuable reference material for reorienting this field and for identifying research trajectories, topics, major publications, and influential entities including scholars, institutions, and countries. It will also identify international collaborations at three levels: micro (that of an individual researcher), meso (that of an institution), and macro (that of a country), in order to inform future lines of research. Methods: The Science Citation Index Expanded from the Web of Science Core Collection was searched for articles and reviews pertaining exclusively to AI in cancer from 2012 through 2022. Annual publication trends were plotted using Microsoft Excel 2019. CiteSpace and VOSViewer were used to investigate the most productive countries, researchers, journals, as well as the sharing of resources, intellectual property, and knowledge base in this field, along with the co-citation analysis of references and keywords. Results: A total of 6757 documents were retrieved. China produced the most publications of any country (2087, 30.89%), and Sun Yat Sen University the highest number (167, 2.47%) of any institute. WEI WANG was the most prolific author (33, 0.49%). RUI ZHANG ranked first for highest betweenness centrality (0.21) and collaboration criteria. Scientific Reports was found to be the most prolific journal (208, 3.18%), while PloS one had the most co-citations (2121, 1.55%). Strong and ongoing citation bursts were found for keywords such as “tissue microarray”, “tissue segmentation”, and “artificial neural network”. Conclusions: Deep learning currently represents one of the most cutting-edge and applicable branches of AI in oncology. The literature to date has dealt extensively with radiomics, genomics, pathology, risk stratification, lesion detection, and therapy response. Current hot topics identified by our analysis highlight the potential application of AI in radiomics and precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡爱吃饭完成签到 ,获得积分10
51秒前
1分钟前
apckkk完成签到 ,获得积分10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
默默雪旋完成签到 ,获得积分10
1分钟前
坚强的铅笔完成签到 ,获得积分10
1分钟前
wdy111应助wbh采纳,获得20
1分钟前
无限晓蓝完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
XIA完成签到 ,获得积分10
2分钟前
喜悦的香之完成签到 ,获得积分10
2分钟前
嘻嘻哈哈啊完成签到 ,获得积分10
2分钟前
科研佟完成签到 ,获得积分10
2分钟前
Skywalk满天星完成签到,获得积分10
2分钟前
心想事成完成签到 ,获得积分10
2分钟前
Lny发布了新的文献求助10
3分钟前
通科研完成签到 ,获得积分10
3分钟前
在水一方应助飞翔的企鹅采纳,获得10
3分钟前
creep2020完成签到,获得积分10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
少年完成签到,获得积分10
3分钟前
liuzhigang完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
榆木小鸟完成签到 ,获得积分10
4分钟前
雪流星完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
蒙面侠完成签到 ,获得积分10
5分钟前
CC发布了新的文献求助10
5分钟前
哈哈哈完成签到 ,获得积分10
5分钟前
王世卉完成签到,获得积分10
5分钟前
ccyy完成签到 ,获得积分10
5分钟前
3120221053完成签到,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990603
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234