Boost in mechanical strength of additive manufactured CoCrFeMnNi HEA by reinforcement inclusion of B4C nano-particles

材料科学 复合材料 材料的强化机理 极限抗拉强度 复合数 纳米- 晶界 微观结构
作者
Soung Yeoul Ahn,Farahnaz Haftlang,Eun Seong Kim,Sang Guk Jeong,Ji Sun Lee,Hyoung Seop Kim
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:960: 170631-170631 被引量:12
标识
DOI:10.1016/j.jallcom.2023.170631
摘要

As a way to improve the strength of high-entropy alloys (HEAs), reinforcement by composite fabrication of HEAs has recently been investigated in various ways. In this study, CoCrFeMnNi+B4C (2 wt%) high-entropy composite (HEC) parts were fabricated using the direct energy deposition (DED) process of pre-ball milled powders. The grain growth is severely hindered by B4C nano-particles during the layer-by-layer printing of CoCrFeMnNi+B4C HEC compared to CoCrFeMnNi HEA. In addition, as a collateral effect, the sequence of elemental segregation in the dislocation cellular boundary differs in CoCrFeMnNi HEA and CoCrFeMnNi+B4C HEC. Additional segregation of Cr, Mn, and C elements into the cell boundary has been observed. In fact, unlike the CoCrFeMnNi HEA, the segregation of Cr, Mn, and C provides a presence of carbide-rich regions because of the partial decomposition of B4C nano-particles. Furthermore, the B4C nano-particle promotes the pinning effect of moving dislocation leading to the high dislocation density in the matrix, which contributes the biggest portion of strength reinforcing of CoCrFeMnNi+B4C HEC. Besides, the well-distributed B4C nano-particles boost the final strength of the HEC component by providing an additional dispersion hardening effect. Therefore, by co-activation of various strengthening mechanisms, the CoCrFeMnNi+B4C HEC showed magnificent yield and ultimate tensile strengths of 1024 ± 20 MPa and 1264 ± 16 MPa, respectively, with more than 7% of total elongation, which is much higher mechanical strength than the ones reported in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助李华强采纳,获得10
刚刚
刚刚
wenfucjb1发布了新的文献求助10
刚刚
w2503发布了新的文献求助30
1秒前
高挑的寒松完成签到,获得积分10
1秒前
2秒前
榆钱完成签到,获得积分10
2秒前
纯真若雁完成签到,获得积分10
2秒前
喜悦飞丹关注了科研通微信公众号
2秒前
2秒前
飞奔的晶粒完成签到,获得积分10
3秒前
4秒前
77发布了新的文献求助10
4秒前
4秒前
Akim应助壮观梦之采纳,获得10
4秒前
5秒前
ding应助QQ采纳,获得10
6秒前
6秒前
yydsyk完成签到,获得积分10
6秒前
6秒前
6秒前
阳光白羊完成签到,获得积分10
7秒前
慕青应助肖珂采纳,获得10
7秒前
清风悠笛完成签到,获得积分10
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
贰鸟应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
YYJ25完成签到,获得积分10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
t1发布了新的文献求助10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得30
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479035
求助须知:如何正确求助?哪些是违规求助? 3069819
关于积分的说明 9115453
捐赠科研通 2761613
什么是DOI,文献DOI怎么找? 1515399
邀请新用户注册赠送积分活动 700890
科研通“疑难数据库(出版商)”最低求助积分说明 699911