Cervical spine fracture detection in computed tomography using convolutional neural networks

卷积神经网络 计算机断层摄影术 颈椎 人工智能 计算机科学 断裂(地质) 放射科 医学 地质学 外科 岩土工程
作者
Alena‐Kathrin Golla,Cristian Lorenz,Christian Buerger,Tanja Lossau,Tobias Klinder,Sven Mutze,Holger Arndt,Frederik Spohn,Marlene Mittmann,Leonie Goelz
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (11): 115010-115010 被引量:5
标识
DOI:10.1088/1361-6560/acd48b
摘要

Objective.In the context of primary in-hospital trauma management timely reading of computed tomography (CT) images is critical. However, assessment of the spine is time consuming, fractures can be very subtle, and the potential for under-diagnosis or delayed diagnosis is relevant. Artificial intelligence is increasingly employed to assist radiologists with the detection of spinal fractures and prioritization of cases. Currently, algorithms focusing on the cervical spine are commercially available. A common approach is the vertebra-wise classification. Instead of a classification task, we formulate fracture detection as a segmentation task aiming to find and display all individual fracture locations presented in the image.Approach.Based on 195 CT examinations, 454 cervical spine fractures were identified and annotated by radiologists at a tertiary trauma center. We trained for the detection a U-Net via four-fold-cross validation to segment spine fractures and the spine via a multi-task loss. We further compared advantages of two image reformation approaches-straightened curved planar reformatted (CPR) around the spine and spinal canal aligned volumes of interest (VOI)-to achieve a unified vertebral alignment in comparison to processing the Cartesian data directly.Main results.Of the three data versions (Cartesian, reformatted, VOI) the VOI approach showed the best detection rate and a reduced computation time. The proposed algorithm was able to detect 87.2% of cervical spine fractures at an average number of false positives of 3.5 per case. Evaluation of the method on a public spine dataset resulted in 0.9 false positive detections per cervical spine case.Significance.The display of individual fracture locations as provided with high sensitivity by the proposed voxel classification based fracture detection has the potential to support the trauma CT reading workflow by reducing missed findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongjing发布了新的文献求助10
1秒前
老实的衬衫完成签到 ,获得积分10
2秒前
2秒前
2秒前
Fortune发布了新的文献求助10
3秒前
3秒前
Ripples完成签到,获得积分10
4秒前
彭于晏应助hongjing采纳,获得10
4秒前
科研通AI6应助wang采纳,获得10
4秒前
酷炫魂幽发布了新的文献求助10
5秒前
5秒前
浅蓝发布了新的文献求助10
6秒前
小杭76应助wocao采纳,获得10
6秒前
传奇3应助Refuel采纳,获得10
7秒前
huangbing123完成签到 ,获得积分10
7秒前
乐乐应助咩咩采纳,获得10
8秒前
漫天白沙完成签到 ,获得积分10
8秒前
tangzanwayne完成签到 ,获得积分10
9秒前
wanna发布了新的文献求助10
9秒前
9秒前
Wendell发布了新的文献求助10
10秒前
10秒前
项阑悦完成签到,获得积分10
11秒前
无骨鸡爪不长胖完成签到,获得积分10
11秒前
11秒前
monned完成签到 ,获得积分10
12秒前
冉景平完成签到 ,获得积分10
12秒前
12秒前
嘻嘻发布了新的文献求助10
13秒前
领导范儿应助Refuel采纳,获得10
13秒前
义气青丝发布了新的文献求助10
15秒前
名不显时心不朽完成签到,获得积分10
16秒前
乐乐乐发布了新的文献求助10
17秒前
林灏泽完成签到,获得积分10
17秒前
19秒前
20秒前
wanci应助Refuel采纳,获得10
21秒前
Wendell完成签到,获得积分10
21秒前
22秒前
完美世界应助wjw采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429