A review of synthetic and augmented training data for machine learning in ultrasonic non-destructive evaluation

计算机科学 过度拟合 合成数据 人工智能 机器学习 背景(考古学) 实验数据 有限元法 人工神经网络 叠加原理 试验数据 古生物学 统计 物理 数学 量子力学 生物 程序设计语言 热力学
作者
Sebastian Uhlig,I. Alkhasli,Frank Schubert,Carsten Tschöpe,Matthias Wolff
出处
期刊:Ultrasonics [Elsevier]
卷期号:134: 107041-107041 被引量:16
标识
DOI:10.1016/j.ultras.2023.107041
摘要

Ultrasonic Testing (UT) has seen increasing application of machine learning (ML) in recent years, promoting higher-level automation and decision-making in flaw detection and classification. Building a generalized training dataset to apply ML in non-destructive evaluation (NDE), and thus UT, is exceptionally difficult since data on pristine and representative flawed specimens are needed. Yet, in most UT test cases flawed specimen data is inherently rare making data coverage the leading problem when applying ML. Common data augmentation (DA) strategies offer limited solutions as they don't increase the dataset variance, which can lead to overfitting of the training data. The virtual defect method and the recent application of generative adversarial neural networks (GANs) in UT are sophisticated DA methods targeting to solve this problem. On the other hand, well-established research in modeling ultrasonic wave propagations allows for the generation of synthetic UT training data. In this context, we present a first thematic review to summarize the progress of the last decades on synthetic and augmented UT training data in NDE. Additionally, an overview of methods for synthetic UT data generation and augmentation is presented. Among numerical methods such as finite element, finite difference, and elastodynamic finite integration methods, semi-analytical methods such as general point source synthesis, superposition of Gaussian beams, and the pencil method as well as other UT modeling software are presented and discussed. Likewise, existing DA methods for one- and multidimensional UT data, feature space augmentation, and GANs for augmentation are presented and discussed. The paper closes with an in-detail discussion of the advantages and limitations of existing methods for both synthetic UT training data generation and DA of UT data to aid the decision-making of the reader for the application to specific test cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
意明发布了新的文献求助10
刚刚
Adel完成签到 ,获得积分10
刚刚
把的蛮耐得烦完成签到,获得积分10
5秒前
DONGLK完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
153495159举报求助违规成功
9秒前
于芋菊举报求助违规成功
9秒前
科研文献搬运工举报求助违规成功
9秒前
9秒前
11秒前
书岩完成签到,获得积分10
11秒前
11秒前
罗亚亚完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
科研通AI2S应助能干的白风采纳,获得10
17秒前
18秒前
远山完成签到 ,获得积分10
19秒前
TAN应助徐凡采纳,获得10
19秒前
DXSW0415完成签到,获得积分10
20秒前
烟花应助悦耳的柠檬采纳,获得10
22秒前
一只大憨憨猫完成签到,获得积分10
24秒前
一番发布了新的文献求助10
24秒前
无花果应助dd采纳,获得10
27秒前
28秒前
不配.应助柚子哈密瓜采纳,获得20
29秒前
Chb发布了新的文献求助10
30秒前
kiki发布了新的文献求助10
30秒前
悦耳的柠檬完成签到,获得积分10
30秒前
30秒前
31秒前
邮电大队长完成签到,获得积分10
32秒前
Yuuuu完成签到 ,获得积分10
32秒前
了该完成签到,获得积分10
34秒前
Murphy_H完成签到,获得积分10
35秒前
田様应助健康的绮晴采纳,获得10
36秒前
锂sdsa发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155891
求助须知:如何正确求助?哪些是违规求助? 2807086
关于积分的说明 7871889
捐赠科研通 2465477
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905