A review of synthetic and augmented training data for machine learning in ultrasonic non-destructive evaluation

计算机科学 过度拟合 合成数据 人工智能 机器学习 背景(考古学) 实验数据 有限元法 人工神经网络 叠加原理 试验数据 古生物学 统计 物理 数学 量子力学 生物 程序设计语言 热力学
作者
Sebastian Uhlig,I. Alkhasli,Frank Schubert,Carsten Tschöpe,Matthias Wolff
出处
期刊:Ultrasonics [Elsevier]
卷期号:134: 107041-107041 被引量:16
标识
DOI:10.1016/j.ultras.2023.107041
摘要

Ultrasonic Testing (UT) has seen increasing application of machine learning (ML) in recent years, promoting higher-level automation and decision-making in flaw detection and classification. Building a generalized training dataset to apply ML in non-destructive evaluation (NDE), and thus UT, is exceptionally difficult since data on pristine and representative flawed specimens are needed. Yet, in most UT test cases flawed specimen data is inherently rare making data coverage the leading problem when applying ML. Common data augmentation (DA) strategies offer limited solutions as they don't increase the dataset variance, which can lead to overfitting of the training data. The virtual defect method and the recent application of generative adversarial neural networks (GANs) in UT are sophisticated DA methods targeting to solve this problem. On the other hand, well-established research in modeling ultrasonic wave propagations allows for the generation of synthetic UT training data. In this context, we present a first thematic review to summarize the progress of the last decades on synthetic and augmented UT training data in NDE. Additionally, an overview of methods for synthetic UT data generation and augmentation is presented. Among numerical methods such as finite element, finite difference, and elastodynamic finite integration methods, semi-analytical methods such as general point source synthesis, superposition of Gaussian beams, and the pencil method as well as other UT modeling software are presented and discussed. Likewise, existing DA methods for one- and multidimensional UT data, feature space augmentation, and GANs for augmentation are presented and discussed. The paper closes with an in-detail discussion of the advantages and limitations of existing methods for both synthetic UT training data generation and DA of UT data to aid the decision-making of the reader for the application to specific test cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Umwandlung完成签到,获得积分10
1秒前
gorgeousgaga完成签到,获得积分10
1秒前
2秒前
2秒前
科研通AI5应助ipeakkka采纳,获得10
3秒前
852应助章家炜采纳,获得10
4秒前
Gauss应助张小汉采纳,获得30
6秒前
嘻嘻发布了新的文献求助10
6秒前
杰哥完成签到 ,获得积分10
7秒前
Ava应助赵小可可可可采纳,获得10
7秒前
科研通AI5应助kento采纳,获得30
8秒前
nkmenghan发布了新的文献求助10
9秒前
12秒前
redondo10完成签到,获得积分0
13秒前
14秒前
乔qiao发布了新的文献求助30
17秒前
WZ0904发布了新的文献求助10
18秒前
poegtam完成签到,获得积分10
19秒前
大胆盼兰发布了新的文献求助10
20秒前
wuyan204完成签到 ,获得积分10
21秒前
windcreator完成签到,获得积分10
21秒前
redondo5完成签到,获得积分0
21秒前
wangrswjx完成签到 ,获得积分10
21秒前
科研通AI5应助su采纳,获得10
21秒前
24秒前
26秒前
小二郎应助嘻嘻采纳,获得10
26秒前
yun完成签到 ,获得积分10
27秒前
27秒前
29秒前
健忘曼冬发布了新的文献求助10
29秒前
redondo完成签到,获得积分10
29秒前
momo完成签到,获得积分10
30秒前
希望天下0贩的0应助meng采纳,获得10
31秒前
龙歪歪发布了新的文献求助10
32秒前
32秒前
暮城完成签到,获得积分10
32秒前
33秒前
云墨完成签到 ,获得积分10
33秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849