生物力学
医学
矢状面
冠状面
全膝关节置换术
口腔正畸科
关节置换术
步态
解剖
外科
物理医学与康复
作者
Qida Zhang,Yonghan Peng,Zhenxian Chen,Jin Zhang,Ling Qin
标识
DOI:10.1016/j.clinbiomech.2023.105985
摘要
Component alignment is essential to improve knee function and survival in total knee arthroplasty. However, it is still unclear whether the conformity design of tibiofemoral component can mitigate abnormal knee biomechanics caused by component malrotation. The purpose of this study was to investigate whether the sagittal/coronal conformity design of the tibial component could change the effect of the tibial component malrotation on knee biomechanics in total knee arthroplasty.A developed patient-specific musculoskeletal multi-body dynamics model of total knee arthroplasty was used to investigate the effects of the sagittal/coronal conformity of the tibial component on knee contact forces and kinematics caused by tibial component malrotation during the walking gait.Medial and lateral contact forces, internal-external rotation, and anterior-posterior translation were significantly affected by tibial component malrotation after total knee arthroplasty during the walking gait. The lower sagittal conformity of the tibial component can mitigate the abnormal internal-external rotation caused by tibial component malrotation in total knee arthroplasty, the higher coronal conformity of the tibial component can mitigate the abnormal medial-lateral translation caused by tibial component malrotation in total knee arthroplasty.This study highlights the importance of the tibiofemoral conformity designs on knee biomechanics caused by component malrotation in total knee arthroplasty. The optimization of the tibiofemoral conformity designs should be thoroughly considered in the design of new implants and in the planning of surgical procedures.
科研通智能强力驱动
Strongly Powered by AbleSci AI