Random forest method for analysis of remote sensing inversion of aboveground biomass and grazing intensity of grasslands in Inner Mongolia, China

草原 草原 过度放牧 放牧 环境科学 内蒙古 草地退化 遥感 生物量(生态学) 归一化差异植被指数 生长季节 自然地理学 林业 中国 地理 生态学 气候变化 考古 生物
作者
Shuai Wang,Hasi Tuya,Shengwei Zhang,Xingyu Zhao,Zhiqiang Liu,Ruishen Li,Xi Lin
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (9): 2867-2884 被引量:15
标识
DOI:10.1080/01431161.2023.2210724
摘要

The quantification of grassland above-ground biomass (AGB) and grazing intensity (GI) and their distribution in space is of great significance to grassland management and eco-conservation. Remote-sensing technology is widely applied, but it is difficult to measure accurately when monitoring GI. In this study, the neural network, random forest and statistical function models of the relationship between Landsat NDVI and AGB were constructed by field survey and literature data collection in Inner Mongolia grassland, China. By comparing the accuracy among the three models, we constructed a remote-sensing retrieving model of grass AGB. We also estimated the grassland AGB during the peak growing season (August) for Inner Mongolia. Frequency histograms were then made to identify AGB thresholds under four GI levels (light or ungrazed, moderate grazing, overgrazing and extreme grazing) for each of three grassland types (meadow steppe, typical steppe and desert steppe). This study shows that the random forest model simulates grass AGB more accurately than other models. The spatial distribution of AGB in Inner Mongolia grasslands showed a tendency of decreasing from southeast to northwest, with an increasing trend in the last 10 years. The four GI levels in 2021 accounted for 18%, 25%, 36% and 21% of the grasslands in Inner Mongolia, respectively, and over the last 10 years the GI first improved and then deteriorated. This study provides a guideline to remote monitoring for grassland AGB and GI, and supplies scientific support for sustainable management and grassland restoration of large-scale grasslands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上岸上岸完成签到,获得积分10
1秒前
1秒前
彩色的灭龙完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
4秒前
任性的白玉完成签到 ,获得积分10
4秒前
鹅鹅发布了新的文献求助10
7秒前
8秒前
小清完成签到,获得积分10
9秒前
zinc发布了新的文献求助10
9秒前
10秒前
11秒前
英俊的铭应助yiyososo采纳,获得10
11秒前
川桜发布了新的文献求助20
11秒前
13秒前
解语花完成签到,获得积分10
13秒前
疯子扬发布了新的文献求助10
14秒前
16秒前
无花果应助能干的cen采纳,获得10
16秒前
共享精神应助务实的海之采纳,获得30
17秒前
jzyy完成签到,获得积分10
18秒前
java完成签到,获得积分10
21秒前
解语花发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
清淮完成签到 ,获得积分10
25秒前
25秒前
ssgecust完成签到,获得积分10
26秒前
27秒前
27秒前
秀丽的晓凡完成签到,获得积分10
28秒前
半青一江完成签到 ,获得积分10
28秒前
28秒前
浮游应助jzyy采纳,获得10
29秒前
量子星尘发布了新的文献求助10
29秒前
Sandwich发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4961600
求助须知:如何正确求助?哪些是违规求助? 4221894
关于积分的说明 13148834
捐赠科研通 4005974
什么是DOI,文献DOI怎么找? 2192626
邀请新用户注册赠送积分活动 1206485
关于科研通互助平台的介绍 1118175