Random forest method for analysis of remote sensing inversion of aboveground biomass and grazing intensity of grasslands in Inner Mongolia, China

草原 草原 过度放牧 放牧 环境科学 内蒙古 草地退化 遥感 生物量(生态学) 归一化差异植被指数 生长季节 自然地理学 林业 中国 地理 生态学 气候变化 考古 生物
作者
Shuai Wang,Hasi Tuya,Shengwei Zhang,Xingyu Zhao,Zhiqiang Liu,Ruishen Li,Xi Lin
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (9): 2867-2884 被引量:12
标识
DOI:10.1080/01431161.2023.2210724
摘要

The quantification of grassland above-ground biomass (AGB) and grazing intensity (GI) and their distribution in space is of great significance to grassland management and eco-conservation. Remote-sensing technology is widely applied, but it is difficult to measure accurately when monitoring GI. In this study, the neural network, random forest and statistical function models of the relationship between Landsat NDVI and AGB were constructed by field survey and literature data collection in Inner Mongolia grassland, China. By comparing the accuracy among the three models, we constructed a remote-sensing retrieving model of grass AGB. We also estimated the grassland AGB during the peak growing season (August) for Inner Mongolia. Frequency histograms were then made to identify AGB thresholds under four GI levels (light or ungrazed, moderate grazing, overgrazing and extreme grazing) for each of three grassland types (meadow steppe, typical steppe and desert steppe). This study shows that the random forest model simulates grass AGB more accurately than other models. The spatial distribution of AGB in Inner Mongolia grasslands showed a tendency of decreasing from southeast to northwest, with an increasing trend in the last 10 years. The four GI levels in 2021 accounted for 18%, 25%, 36% and 21% of the grasslands in Inner Mongolia, respectively, and over the last 10 years the GI first improved and then deteriorated. This study provides a guideline to remote monitoring for grassland AGB and GI, and supplies scientific support for sustainable management and grassland restoration of large-scale grasslands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花完成签到 ,获得积分10
刚刚
calm完成签到,获得积分10
刚刚
刚刚
1秒前
cxc发布了新的文献求助10
1秒前
123123123完成签到,获得积分10
1秒前
2秒前
zhijianzhe完成签到,获得积分20
2秒前
熊二完成签到,获得积分10
2秒前
2秒前
Ana完成签到,获得积分10
2秒前
2秒前
wangjunhao发布了新的文献求助10
2秒前
丘比特应助怡然的代玉采纳,获得10
2秒前
充电宝应助fusheng采纳,获得10
3秒前
Chao123_完成签到,获得积分10
3秒前
4秒前
HP完成签到,获得积分10
4秒前
车轮滚滚完成签到,获得积分10
4秒前
5秒前
东邪西毒加任我行完成签到,获得积分10
6秒前
6秒前
Chao123_发布了新的文献求助10
7秒前
虹虹完成签到,获得积分10
7秒前
bettersy完成签到,获得积分10
7秒前
Rondab应助车轮滚滚采纳,获得10
7秒前
小陆发布了新的文献求助10
7秒前
7秒前
Lucas应助大松鼠采纳,获得20
7秒前
7秒前
兴奋赛君发布了新的文献求助10
8秒前
开心超人发布了新的文献求助10
9秒前
汉堡包应助linmo采纳,获得10
9秒前
9秒前
10秒前
Rubby应助虹虹采纳,获得10
12秒前
外向烤鸡发布了新的文献求助10
12秒前
cc完成签到,获得积分10
12秒前
星辰大海应助blawxx采纳,获得10
13秒前
能干的向真应助TresAU采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288