Random forest method for analysis of remote sensing inversion of aboveground biomass and grazing intensity of grasslands in Inner Mongolia, China

草原 草原 过度放牧 放牧 环境科学 内蒙古 草地退化 遥感 生物量(生态学) 归一化差异植被指数 生长季节 自然地理学 林业 中国 地理 生态学 气候变化 考古 生物
作者
Shuai Wang,Hasi Tuya,Shengwei Zhang,Xingyu Zhao,Zhiqiang Liu,Ruishen Li,Xi Lin
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (9): 2867-2884 被引量:15
标识
DOI:10.1080/01431161.2023.2210724
摘要

The quantification of grassland above-ground biomass (AGB) and grazing intensity (GI) and their distribution in space is of great significance to grassland management and eco-conservation. Remote-sensing technology is widely applied, but it is difficult to measure accurately when monitoring GI. In this study, the neural network, random forest and statistical function models of the relationship between Landsat NDVI and AGB were constructed by field survey and literature data collection in Inner Mongolia grassland, China. By comparing the accuracy among the three models, we constructed a remote-sensing retrieving model of grass AGB. We also estimated the grassland AGB during the peak growing season (August) for Inner Mongolia. Frequency histograms were then made to identify AGB thresholds under four GI levels (light or ungrazed, moderate grazing, overgrazing and extreme grazing) for each of three grassland types (meadow steppe, typical steppe and desert steppe). This study shows that the random forest model simulates grass AGB more accurately than other models. The spatial distribution of AGB in Inner Mongolia grasslands showed a tendency of decreasing from southeast to northwest, with an increasing trend in the last 10 years. The four GI levels in 2021 accounted for 18%, 25%, 36% and 21% of the grasslands in Inner Mongolia, respectively, and over the last 10 years the GI first improved and then deteriorated. This study provides a guideline to remote monitoring for grassland AGB and GI, and supplies scientific support for sustainable management and grassland restoration of large-scale grasslands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
ZiyuanLi完成签到 ,获得积分10
2秒前
爆米花应助Amy采纳,获得10
2秒前
kk发布了新的文献求助10
2秒前
7秒前
科研狗完成签到 ,获得积分10
7秒前
和谐的火龙果完成签到,获得积分10
9秒前
10秒前
cosimo完成签到 ,获得积分10
13秒前
CZLhaust发布了新的文献求助10
14秒前
phl发布了新的文献求助10
14秒前
llj发布了新的文献求助20
14秒前
DS驳回了小二郎应助
15秒前
15秒前
丘比特应助piaopiao采纳,获得10
16秒前
传奇3应助CZLhaust采纳,获得30
18秒前
19秒前
英姑应助sun采纳,获得10
19秒前
20秒前
追寻的安南完成签到,获得积分10
20秒前
21秒前
Alone完成签到 ,获得积分10
21秒前
22秒前
勤恳绝施完成签到,获得积分10
22秒前
科研通AI6应助ws123采纳,获得10
23秒前
ding应助qiongqiong采纳,获得10
25秒前
迷路冰巧完成签到,获得积分10
25秒前
卡比托发布了新的文献求助10
25秒前
26秒前
27秒前
哭泣冬灵发布了新的文献求助10
28秒前
天天快乐应助好困采纳,获得10
29秒前
小小发布了新的文献求助30
31秒前
33秒前
34秒前
122发布了新的文献求助10
34秒前
36秒前
琉璃发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123717
求助须知:如何正确求助?哪些是违规求助? 4328095
关于积分的说明 13486321
捐赠科研通 4162431
什么是DOI,文献DOI怎么找? 2281452
邀请新用户注册赠送积分活动 1282864
关于科研通互助平台的介绍 1221964