Random forest method for analysis of remote sensing inversion of aboveground biomass and grazing intensity of grasslands in Inner Mongolia, China

草原 草原 过度放牧 放牧 环境科学 内蒙古 草地退化 遥感 生物量(生态学) 归一化差异植被指数 生长季节 自然地理学 林业 中国 地理 生态学 气候变化 考古 生物
作者
Shuai Wang,Hasi Tuya,Shengwei Zhang,Xingyu Zhao,Zhiqiang Liu,Ruishen Li,Xi Lin
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (9): 2867-2884 被引量:15
标识
DOI:10.1080/01431161.2023.2210724
摘要

The quantification of grassland above-ground biomass (AGB) and grazing intensity (GI) and their distribution in space is of great significance to grassland management and eco-conservation. Remote-sensing technology is widely applied, but it is difficult to measure accurately when monitoring GI. In this study, the neural network, random forest and statistical function models of the relationship between Landsat NDVI and AGB were constructed by field survey and literature data collection in Inner Mongolia grassland, China. By comparing the accuracy among the three models, we constructed a remote-sensing retrieving model of grass AGB. We also estimated the grassland AGB during the peak growing season (August) for Inner Mongolia. Frequency histograms were then made to identify AGB thresholds under four GI levels (light or ungrazed, moderate grazing, overgrazing and extreme grazing) for each of three grassland types (meadow steppe, typical steppe and desert steppe). This study shows that the random forest model simulates grass AGB more accurately than other models. The spatial distribution of AGB in Inner Mongolia grasslands showed a tendency of decreasing from southeast to northwest, with an increasing trend in the last 10 years. The four GI levels in 2021 accounted for 18%, 25%, 36% and 21% of the grasslands in Inner Mongolia, respectively, and over the last 10 years the GI first improved and then deteriorated. This study provides a guideline to remote monitoring for grassland AGB and GI, and supplies scientific support for sustainable management and grassland restoration of large-scale grasslands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JQing应助就晚安喽采纳,获得10
刚刚
霞霞发布了新的文献求助10
刚刚
科目三应助白菜也挺贵采纳,获得10
刚刚
七七发布了新的文献求助10
刚刚
圈哥完成签到,获得积分10
1秒前
1秒前
1秒前
13发布了新的文献求助10
1秒前
fighting发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
壮观的白羊完成签到 ,获得积分10
4秒前
充电宝应助zj采纳,获得10
5秒前
6秒前
6秒前
风起发布了新的文献求助10
6秒前
glycine发布了新的文献求助10
6秒前
周周发布了新的文献求助10
6秒前
yukky发布了新的文献求助10
6秒前
浮游应助masque采纳,获得20
6秒前
jason完成签到,获得积分0
7秒前
柒月樊霜完成签到,获得积分10
7秒前
Herman完成签到,获得积分10
7秒前
知性的凡双完成签到,获得积分10
7秒前
8秒前
小伊发布了新的文献求助10
8秒前
8秒前
~静完成签到,获得积分10
8秒前
9秒前
在水一方应助Rashalin采纳,获得10
9秒前
9秒前
Ava应助冰山泥采纳,获得10
9秒前
乐观鸣凤完成签到,获得积分10
9秒前
10秒前
10秒前
蛋白完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513