已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of prostate cancer recurrence after radiotherapy using a fused machine learning approach: Utilizing radiomics from pretreatment T2W MRI images with clinical and pathological information

无线电技术 前列腺癌 放射治疗 病态的 医学 医学物理学 人工智能 癌症 放射科 计算机科学 内科学
作者
Negin Piran Nanekaran,Tony Felefly,Nicola Schieda,Scott Morgan,Richa Mittal,Eran Ukwatta
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 065035-065035 被引量:1
标识
DOI:10.1088/2057-1976/ad8201
摘要

Abstract Background. ThePlease provide an email address for the corresponding author. risk of biochemical recurrence (BCR) after radiotherapy for localized prostate cancer (PCa) varies widely within standard risk groups. There's a need for low-cost tools to more robustly predict recurrence and personalize therapy. Radiomic features from pretreatment MRI show potential as noninvasive biomarkers for BCR prediction. Previous research has not fully combined radiomics with clinical and pathological data in predicting BCR of PCa patients after radiotherapy. Purpose. This study aims to predict 5-year BCR using radiomics from pretreatment T2W MRI and clinical-pathological data in PCa patients treated with radiation therapy, and to develop a unified model compatible with 1.5T and 3T MRI scanners. Methods. 150 T2W scans and clinical parameters were preprocessed. 120 cases were used for training and validation, and 30 for testing. Four distinct machine learning models were developed: Model 1 used radiomics, Model 2 used clinical and pathological data, Model 3 combined these via late fusion. Model 4 integrated radiomic and clinical-pathological data via early fusion . Results. Model 1 achieved an AUC of 0.73, while Model 2 had an AUC of 0.64 for predicting outcomes in 30 new test cases. Model 3, using late fusion, had an AUC of 0.69. Early fusion models showed promise: Model 4 reached an AUC of 0.84 highlighting the effectiveness of early fusion model. Conclusions. This study is the first to use fusion technique for predicting BCR in PCa patients following radiotherapy, using pre-treatment T2W MRI images and clinical-pathological data. Our methodology improves predictive accuracy by fusing radiomics with clinical-pathological information, even with a small dataset, and introduces the first unified model for both 1.5T and 3T MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
顾矜应助井盖发采纳,获得10
2秒前
冬天里的蝴蝶完成签到,获得积分10
2秒前
木土完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
hamburger完成签到 ,获得积分10
5秒前
aniver发布了新的文献求助10
5秒前
7秒前
xwxw完成签到,获得积分10
8秒前
完美世界应助萱萱采纳,获得10
8秒前
黄毛虎完成签到 ,获得积分0
10秒前
浮游应助taoliu采纳,获得10
11秒前
xwxw发布了新的文献求助10
14秒前
王嘉尔完成签到,获得积分10
14秒前
15秒前
年轻道之关注了科研通微信公众号
15秒前
滴滴答答发布了新的文献求助10
17秒前
科研通AI6应助洞两采纳,获得10
17秒前
王嘉尔发布了新的文献求助10
19秒前
19秒前
星辰大海应助白泽采纳,获得10
20秒前
ZH完成签到 ,获得积分10
21秒前
taoliu完成签到,获得积分10
22秒前
laomuxile发布了新的文献求助80
22秒前
23秒前
wab完成签到,获得积分0
26秒前
lyy完成签到 ,获得积分10
28秒前
29秒前
TCMning完成签到,获得积分10
29秒前
31秒前
31秒前
风清扬发布了新的文献求助30
32秒前
香蕉觅云应助清爽音响采纳,获得10
33秒前
年轻道之发布了新的文献求助10
36秒前
36秒前
杭谷波发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356