Prediction of prostate cancer recurrence after radiotherapy using a fused machine learning approach: Utilizing radiomics from pretreatment T2W MRI images with clinical and pathological information

无线电技术 前列腺癌 放射治疗 病态的 医学 医学物理学 人工智能 癌症 放射科 计算机科学 内科学
作者
Negin Piran Nanekaran,Tony Felefly,Nicola Schieda,Scott Morgan,Richa Mittal,Eran Ukwatta
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 065035-065035 被引量:1
标识
DOI:10.1088/2057-1976/ad8201
摘要

Abstract Background. ThePlease provide an email address for the corresponding author. risk of biochemical recurrence (BCR) after radiotherapy for localized prostate cancer (PCa) varies widely within standard risk groups. There's a need for low-cost tools to more robustly predict recurrence and personalize therapy. Radiomic features from pretreatment MRI show potential as noninvasive biomarkers for BCR prediction. Previous research has not fully combined radiomics with clinical and pathological data in predicting BCR of PCa patients after radiotherapy. Purpose. This study aims to predict 5-year BCR using radiomics from pretreatment T2W MRI and clinical-pathological data in PCa patients treated with radiation therapy, and to develop a unified model compatible with 1.5T and 3T MRI scanners. Methods. 150 T2W scans and clinical parameters were preprocessed. 120 cases were used for training and validation, and 30 for testing. Four distinct machine learning models were developed: Model 1 used radiomics, Model 2 used clinical and pathological data, Model 3 combined these via late fusion. Model 4 integrated radiomic and clinical-pathological data via early fusion . Results. Model 1 achieved an AUC of 0.73, while Model 2 had an AUC of 0.64 for predicting outcomes in 30 new test cases. Model 3, using late fusion, had an AUC of 0.69. Early fusion models showed promise: Model 4 reached an AUC of 0.84 highlighting the effectiveness of early fusion model. Conclusions. This study is the first to use fusion technique for predicting BCR in PCa patients following radiotherapy, using pre-treatment T2W MRI images and clinical-pathological data. Our methodology improves predictive accuracy by fusing radiomics with clinical-pathological information, even with a small dataset, and introduces the first unified model for both 1.5T and 3T MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
蒲云海发布了新的文献求助10
4秒前
自觉的向日葵完成签到,获得积分10
4秒前
柳叶洋完成签到,获得积分10
5秒前
成就迎梅发布了新的文献求助30
6秒前
6秒前
小艳发布了新的文献求助10
6秒前
刘家小姐姐完成签到,获得积分10
6秒前
九五式自动步枪完成签到 ,获得积分10
7秒前
ll完成签到,获得积分10
7秒前
10秒前
着急的cc完成签到,获得积分10
10秒前
yhhazj1314完成签到,获得积分10
17秒前
18秒前
意忆完成签到,获得积分10
19秒前
19秒前
略略略完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
24秒前
炫酷的雨发布了新的文献求助10
26秒前
vogo7完成签到,获得积分10
27秒前
27秒前
Firo完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
淡定海亦发布了新的文献求助10
29秒前
单于思雁发布了新的文献求助10
31秒前
31秒前
丘比特应助猪猪hero采纳,获得10
35秒前
my完成签到,获得积分20
35秒前
沉寂的秋完成签到,获得积分10
37秒前
38秒前
共享精神应助fighting采纳,获得10
42秒前
45秒前
飘着的鬼发布了新的文献求助10
49秒前
甜美无剑应助科研通管家采纳,获得30
50秒前
cherlie应助科研通管家采纳,获得10
50秒前
8R60d8应助科研通管家采纳,获得10
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309