Prediction of prostate cancer recurrence after radiotherapy using a fused machine learning approach: Utilizing radiomics from pretreatment T2W MRI images with clinical and pathological information

无线电技术 前列腺癌 放射治疗 病态的 医学 医学物理学 人工智能 癌症 放射科 计算机科学 内科学
作者
Negin Piran Nanekaran,Tony Felefly,Nicola Schieda,Scott Morgan,Richa Mittal,Eran Ukwatta
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 065035-065035 被引量:1
标识
DOI:10.1088/2057-1976/ad8201
摘要

Abstract Background. ThePlease provide an email address for the corresponding author. risk of biochemical recurrence (BCR) after radiotherapy for localized prostate cancer (PCa) varies widely within standard risk groups. There's a need for low-cost tools to more robustly predict recurrence and personalize therapy. Radiomic features from pretreatment MRI show potential as noninvasive biomarkers for BCR prediction. Previous research has not fully combined radiomics with clinical and pathological data in predicting BCR of PCa patients after radiotherapy. Purpose. This study aims to predict 5-year BCR using radiomics from pretreatment T2W MRI and clinical-pathological data in PCa patients treated with radiation therapy, and to develop a unified model compatible with 1.5T and 3T MRI scanners. Methods. 150 T2W scans and clinical parameters were preprocessed. 120 cases were used for training and validation, and 30 for testing. Four distinct machine learning models were developed: Model 1 used radiomics, Model 2 used clinical and pathological data, Model 3 combined these via late fusion. Model 4 integrated radiomic and clinical-pathological data via early fusion . Results. Model 1 achieved an AUC of 0.73, while Model 2 had an AUC of 0.64 for predicting outcomes in 30 new test cases. Model 3, using late fusion, had an AUC of 0.69. Early fusion models showed promise: Model 4 reached an AUC of 0.84 highlighting the effectiveness of early fusion model. Conclusions. This study is the first to use fusion technique for predicting BCR in PCa patients following radiotherapy, using pre-treatment T2W MRI images and clinical-pathological data. Our methodology improves predictive accuracy by fusing radiomics with clinical-pathological information, even with a small dataset, and introduces the first unified model for both 1.5T and 3T MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朴素代秋完成签到,获得积分10
刚刚
杜薇薇发布了新的文献求助10
1秒前
咖啡豆发布了新的文献求助10
1秒前
高兴溪流完成签到,获得积分20
2秒前
2秒前
2秒前
ymjssg应助lee采纳,获得10
2秒前
帅气的机器猫完成签到 ,获得积分10
2秒前
希望天下0贩的0应助浮浮采纳,获得10
2秒前
wzt发布了新的文献求助10
3秒前
3秒前
稻香茶煦发布了新的文献求助10
3秒前
大个应助doing采纳,获得10
3秒前
4秒前
张天宇完成签到,获得积分10
4秒前
4秒前
4秒前
共享精神应助YingyingFan采纳,获得10
5秒前
crazy完成签到,获得积分10
5秒前
高兴溪流发布了新的文献求助10
5秒前
yzr发布了新的文献求助10
5秒前
111完成签到,获得积分10
5秒前
yike关注了科研通微信公众号
5秒前
5秒前
自觉从筠发布了新的文献求助10
6秒前
玛卡巴卡完成签到,获得积分10
6秒前
上官若男应助子姜采纳,获得10
6秒前
LittleWang完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助积雨云采纳,获得10
7秒前
chall应助nullchuang采纳,获得10
8秒前
8秒前
vivre223发布了新的文献求助10
8秒前
9秒前
年富力强聂师傅完成签到,获得积分10
10秒前
星星发布了新的文献求助10
10秒前
LittleWang发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731