Prediction of prostate cancer recurrence after radiotherapy using a fused machine learning approach: Utilizing radiomics from pretreatment T2W MRI images with clinical and pathological information

无线电技术 前列腺癌 放射治疗 病态的 医学 医学物理学 人工智能 癌症 放射科 计算机科学 内科学
作者
Negin Piran Nanekaran,Tony Felefly,Nicola Schieda,Scott Morgan,Richa Mittal,Eran Ukwatta
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 065035-065035 被引量:1
标识
DOI:10.1088/2057-1976/ad8201
摘要

Abstract Background. ThePlease provide an email address for the corresponding author. risk of biochemical recurrence (BCR) after radiotherapy for localized prostate cancer (PCa) varies widely within standard risk groups. There's a need for low-cost tools to more robustly predict recurrence and personalize therapy. Radiomic features from pretreatment MRI show potential as noninvasive biomarkers for BCR prediction. Previous research has not fully combined radiomics with clinical and pathological data in predicting BCR of PCa patients after radiotherapy. Purpose. This study aims to predict 5-year BCR using radiomics from pretreatment T2W MRI and clinical-pathological data in PCa patients treated with radiation therapy, and to develop a unified model compatible with 1.5T and 3T MRI scanners. Methods. 150 T2W scans and clinical parameters were preprocessed. 120 cases were used for training and validation, and 30 for testing. Four distinct machine learning models were developed: Model 1 used radiomics, Model 2 used clinical and pathological data, Model 3 combined these via late fusion. Model 4 integrated radiomic and clinical-pathological data via early fusion . Results. Model 1 achieved an AUC of 0.73, while Model 2 had an AUC of 0.64 for predicting outcomes in 30 new test cases. Model 3, using late fusion, had an AUC of 0.69. Early fusion models showed promise: Model 4 reached an AUC of 0.84 highlighting the effectiveness of early fusion model. Conclusions. This study is the first to use fusion technique for predicting BCR in PCa patients following radiotherapy, using pre-treatment T2W MRI images and clinical-pathological data. Our methodology improves predictive accuracy by fusing radiomics with clinical-pathological information, even with a small dataset, and introduces the first unified model for both 1.5T and 3T MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
1秒前
1秒前
LewisAcid应助要减肥采纳,获得20
1秒前
1秒前
David完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
爱学习的YY完成签到 ,获得积分10
3秒前
3秒前
5秒前
龙龍泷完成签到,获得积分10
7秒前
8秒前
yao完成签到,获得积分10
8秒前
Clarence发布了新的文献求助10
8秒前
8秒前
8秒前
斯文败类应助Anna采纳,获得30
9秒前
会飞的猪qq完成签到,获得积分10
9秒前
11秒前
在水一方应助C_采纳,获得10
11秒前
11秒前
零度完成签到,获得积分10
11秒前
11秒前
弥漫的橘发布了新的文献求助10
11秒前
星辰大海应助ff采纳,获得10
12秒前
hhhh777完成签到 ,获得积分10
12秒前
烁烁发布了新的文献求助10
12秒前
13秒前
13秒前
LewisAcid应助小鱼鱼Fish采纳,获得30
13秒前
量子星尘发布了新的文献求助10
14秒前
小伍同学发布了新的文献求助10
14秒前
今后应助学吧采纳,获得10
14秒前
隐形的朝雪完成签到,获得积分20
14秒前
www发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
风趣铅笔发布了新的文献求助10
15秒前
Lz555完成签到 ,获得积分10
15秒前
松子完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708501
求助须知:如何正确求助?哪些是违规求助? 5188470
关于积分的说明 15254044
捐赠科研通 4861497
什么是DOI,文献DOI怎么找? 2609497
邀请新用户注册赠送积分活动 1560013
关于科研通互助平台的介绍 1517781