Prediction of prostate cancer recurrence after radiotherapy using a fused machine learning approach: Utilizing radiomics from pretreatment T2W MRI images with clinical and pathological information

无线电技术 前列腺癌 放射治疗 病态的 医学 医学物理学 人工智能 癌症 放射科 计算机科学 内科学
作者
Negin Piran Nanekaran,Tony Felefly,Nicola Schieda,Scott Morgan,Richa Mittal,Eran Ukwatta
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 065035-065035 被引量:1
标识
DOI:10.1088/2057-1976/ad8201
摘要

Abstract Background. ThePlease provide an email address for the corresponding author. risk of biochemical recurrence (BCR) after radiotherapy for localized prostate cancer (PCa) varies widely within standard risk groups. There's a need for low-cost tools to more robustly predict recurrence and personalize therapy. Radiomic features from pretreatment MRI show potential as noninvasive biomarkers for BCR prediction. Previous research has not fully combined radiomics with clinical and pathological data in predicting BCR of PCa patients after radiotherapy. Purpose. This study aims to predict 5-year BCR using radiomics from pretreatment T2W MRI and clinical-pathological data in PCa patients treated with radiation therapy, and to develop a unified model compatible with 1.5T and 3T MRI scanners. Methods. 150 T2W scans and clinical parameters were preprocessed. 120 cases were used for training and validation, and 30 for testing. Four distinct machine learning models were developed: Model 1 used radiomics, Model 2 used clinical and pathological data, Model 3 combined these via late fusion. Model 4 integrated radiomic and clinical-pathological data via early fusion . Results. Model 1 achieved an AUC of 0.73, while Model 2 had an AUC of 0.64 for predicting outcomes in 30 new test cases. Model 3, using late fusion, had an AUC of 0.69. Early fusion models showed promise: Model 4 reached an AUC of 0.84 highlighting the effectiveness of early fusion model. Conclusions. This study is the first to use fusion technique for predicting BCR in PCa patients following radiotherapy, using pre-treatment T2W MRI images and clinical-pathological data. Our methodology improves predictive accuracy by fusing radiomics with clinical-pathological information, even with a small dataset, and introduces the first unified model for both 1.5T and 3T MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Landau发布了新的文献求助30
1秒前
1秒前
Bob完成签到,获得积分10
2秒前
2秒前
月岛滴滴发布了新的文献求助10
2秒前
Astrid完成签到,获得积分20
2秒前
勇哥你好发布了新的文献求助10
2秒前
舒适的蜻蜓完成签到,获得积分10
2秒前
3秒前
大个应助虚毅采纳,获得10
3秒前
love7003shan发布了新的文献求助10
3秒前
Nariy发布了新的文献求助10
3秒前
复杂的凝蝶完成签到,获得积分10
3秒前
HaonanZhang完成签到,获得积分10
3秒前
4秒前
寒冷板栗完成签到,获得积分10
4秒前
丘比特应助彪壮的机器猫采纳,获得10
4秒前
凡仔发布了新的文献求助10
5秒前
5秒前
5秒前
dgg发布了新的文献求助10
6秒前
6秒前
6秒前
无花果应助科研采纳,获得10
7秒前
7秒前
quhayley完成签到,获得积分0
7秒前
8秒前
Owen应助欣喜踏歌采纳,获得10
8秒前
owen完成签到,获得积分10
8秒前
8秒前
Hobby完成签到,获得积分0
8秒前
打打应助考拉采纳,获得10
9秒前
斯文败类应助梦心采纳,获得10
9秒前
9秒前
9秒前
蓝天白云发布了新的文献求助10
10秒前
自觉的傥完成签到,获得积分10
10秒前
乐乐应助武淑晴采纳,获得10
10秒前
tutu发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001912
求助须知:如何正确求助?哪些是违规求助? 4247027
关于积分的说明 13231838
捐赠科研通 4045844
什么是DOI,文献DOI怎么找? 2213310
邀请新用户注册赠送积分活动 1223414
关于科研通互助平台的介绍 1143754