Drought prediction in Jilin Province based on deep learning and spatio-temporal sequence modeling

序列(生物学) 地质学 气候学 自然地理学 地理 遗传学 生物
作者
Zhaojun Hou,Beibei Wang,Yichen Zhang,Jiquan Zhang,Jingyuan Song
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:642: 131891-131891
标识
DOI:10.1016/j.jhydrol.2024.131891
摘要

Jilin Province, a key agricultural hub in Northeast China, has long been impacted by climate change, with drought disasters significantly affecting its agricultural output and ecological environment. Accurate drought prediction is essential for the effective utilization of water resources and agricultural production. This study proposes a novel drought prediction model that utilizes the SSA-VMD (Sparrow Search Algorithm Optimized Variational Mode Decomposition) technique to decompose meteorological data, followed by the reconstruction of the decomposed components using four entropy algorithms, including approximate entropy. The model integrates ARIMA (AutoRegressive Integrated Moving Average) and BiLSTM (Bidirectional Long Short-Term Memory network) for forecasting the reconstructed components, subsequently combining their outputs. In terms of spatio-temporal data, the study employs prediction models including the spatio-temporal cube, spatio-temporal hotspot analysis integrated with empirical kriging, and local outlier analysis to examine spatial distribution. The model's predictive performance is validated from three perspectives: statistical characteristics of the indicators, comparison between predicted and observed values through prediction curve plots, and box plots. The results demonstrate that the combined SSA-VMD-ARIMA-BiLSTM model significantly enhances prediction accuracy compared to single models, as exemplified by its application in Changchun City. The model achieved an R2 of 0.938 and a root mean square error (RMSE) of 0.047 in drought prediction, outperforming the single ARIMA model (R2: 0.636, RMSE: 0.709) and the BiLSTM model (R2: 0.514, RMSE: 0.901). Additionally, across the entire province, the model's R2, MAE, and RMSE are 0.82, 0.15, and 0.083, respectively, suggesting that the model exhibits not only high prediction accuracy but also a degree of generalizability. Furthermore, the results from the spatio-temporal cube, spatio-temporal hotspot analysis, and local outlier analysis demonstrate the method's high accuracy and stability in predicting both short-term and long-term droughts. Particularly in short-term drought prediction, the model effectively captures the spatio-temporal distribution characteristics of short-term meteorological droughts. This study offers new methodological support for enhancing the early warning capabilities of drought risk in Jilin Province, providing a robust foundation for addressing the challenges posed by climate change. The findings not only address certain shortcomings in current drought prediction research but also introduce new methodologies and perspectives for future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助li采纳,获得10
1秒前
飘逸晓山发布了新的文献求助10
1秒前
JamesPei应助科研小白采纳,获得10
1秒前
小竹完成签到 ,获得积分10
1秒前
3秒前
充电宝应助sweettroye采纳,获得10
3秒前
bkagyin应助RR采纳,获得10
4秒前
彭于晏应助缺粥采纳,获得10
4秒前
小蘑菇应助Delia采纳,获得10
4秒前
慕青应助西西采纳,获得10
4秒前
5秒前
5秒前
hhl完成签到,获得积分20
5秒前
科研通AI2S应助wanci采纳,获得30
6秒前
犹豫花卷完成签到 ,获得积分10
6秒前
领导范儿应助Ale采纳,获得10
7秒前
992575完成签到,获得积分10
7秒前
qqqq完成签到,获得积分10
7秒前
SciGPT应助五道口植树学院采纳,获得10
8秒前
Sunny-simit发布了新的文献求助10
8秒前
8秒前
在郑州发布了新的文献求助10
8秒前
10秒前
李健应助白华苍松采纳,获得10
11秒前
小樱桃完成签到 ,获得积分10
11秒前
11秒前
酷波er应助伈X采纳,获得10
12秒前
13秒前
13秒前
lotus_lee完成签到 ,获得积分10
13秒前
实现零完成签到 ,获得积分10
14秒前
Anonymity发布了新的文献求助10
14秒前
思源应助在郑州采纳,获得10
15秒前
15秒前
15秒前
Yimi发布了新的文献求助10
15秒前
NexusExplorer应助极品小亮采纳,获得10
16秒前
li发布了新的文献求助10
17秒前
科研小白发布了新的文献求助10
17秒前
深情安青应助乐乐采纳,获得10
17秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156848
求助须知:如何正确求助?哪些是违规求助? 2808269
关于积分的说明 7877026
捐赠科研通 2466691
什么是DOI,文献DOI怎么找? 1312998
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919