Drought prediction in Jilin Province based on deep learning and spatio-temporal sequence modeling

序列(生物学) 地质学 气候学 自然地理学 地理 遗传学 生物
作者
Zhaojun Hou,Beibei Wang,Yichen Zhang,Jiquan Zhang,Jingyuan Song
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:642: 131891-131891 被引量:3
标识
DOI:10.1016/j.jhydrol.2024.131891
摘要

Jilin Province, a key agricultural hub in Northeast China, has long been impacted by climate change, with drought disasters significantly affecting its agricultural output and ecological environment. Accurate drought prediction is essential for the effective utilization of water resources and agricultural production. This study proposes a novel drought prediction model that utilizes the SSA-VMD (Sparrow Search Algorithm Optimized Variational Mode Decomposition) technique to decompose meteorological data, followed by the reconstruction of the decomposed components using four entropy algorithms, including approximate entropy. The model integrates ARIMA (AutoRegressive Integrated Moving Average) and BiLSTM (Bidirectional Long Short-Term Memory network) for forecasting the reconstructed components, subsequently combining their outputs. In terms of spatio-temporal data, the study employs prediction models including the spatio-temporal cube, spatio-temporal hotspot analysis integrated with empirical kriging, and local outlier analysis to examine spatial distribution. The model's predictive performance is validated from three perspectives: statistical characteristics of the indicators, comparison between predicted and observed values through prediction curve plots, and box plots. The results demonstrate that the combined SSA-VMD-ARIMA-BiLSTM model significantly enhances prediction accuracy compared to single models, as exemplified by its application in Changchun City. The model achieved an R2 of 0.938 and a root mean square error (RMSE) of 0.047 in drought prediction, outperforming the single ARIMA model (R2: 0.636, RMSE: 0.709) and the BiLSTM model (R2: 0.514, RMSE: 0.901). Additionally, across the entire province, the model's R2, MAE, and RMSE are 0.82, 0.15, and 0.083, respectively, suggesting that the model exhibits not only high prediction accuracy but also a degree of generalizability. Furthermore, the results from the spatio-temporal cube, spatio-temporal hotspot analysis, and local outlier analysis demonstrate the method's high accuracy and stability in predicting both short-term and long-term droughts. Particularly in short-term drought prediction, the model effectively captures the spatio-temporal distribution characteristics of short-term meteorological droughts. This study offers new methodological support for enhancing the early warning capabilities of drought risk in Jilin Province, providing a robust foundation for addressing the challenges posed by climate change. The findings not only address certain shortcomings in current drought prediction research but also introduce new methodologies and perspectives for future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
所所应助QAQ采纳,获得10
1秒前
烟花应助trial采纳,获得10
1秒前
2秒前
ding应助福明明采纳,获得10
2秒前
3秒前
慕青应助韶华采纳,获得10
4秒前
余南完成签到,获得积分10
4秒前
Yara完成签到 ,获得积分10
4秒前
wanci应助www采纳,获得10
5秒前
5秒前
6秒前
一只特立独行的朱完成签到,获得积分10
7秒前
深味i完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
子唯发布了新的文献求助10
9秒前
kk发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
11秒前
xuan关注了科研通微信公众号
11秒前
11秒前
娜娜发布了新的文献求助10
12秒前
LaTeXer应助科研通管家采纳,获得80
12秒前
棋士应助科研通管家采纳,获得10
12秒前
Rondab应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
自信南霜应助科研通管家采纳,获得10
13秒前
AIGT发布了新的文献求助10
13秒前
棋士应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
鸣笛应助科研通管家采纳,获得30
13秒前
棋士应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019