摘要
This paper presents the results of a study of the mineralogical and chemical composition of zinc and lead metallurgical slags. These slags contain numerous elements, including toxic metals, which form conglomerates or multiphase intergrowths. The phase composition of slags is one of the main factors that determine their behaviour in weathering environments, that is, their ability to release metals when exposed to atmospheric factors. In this paper, the release of elements from slags and their mobility in a hypergenic environment is determined based on the results of leachability tests and on geochemical modelling, thus assessing the environmental impact of landfilled slags. The elements released from slags in the largest quantities are zinc and lead. Zn is leached out over a long period of time. It was found that after 12 years, the concentration of Zn in the eluate exceeds by 40 times the permissible value of 200 mg/kg for hazardous waste. The degree of leaching of lead from slags as a function of time (after 12 years), despite its significant solubility in water, is much lower than the degree of leaching of zinc. The most mobile phase components of slags in the studied hypergenic environment are the lead phases (anglesite and galena) and, to a lesser extent, the zinc phases (sphalerite and willemite). Anglesite and galena in almost the entire Eh-pH range, along with admixtures of elements, decompose into ionic forms: PbCl42−, Pb2+, and PbOH+. Sphalerite in the soil and water environment (oxidizing and acidic conditions) will decompose into the mobile ionic form Zn2+. Willemite, which is resistant to weathering, will undergo similar decomposition. It can therefore be assumed that the carriers of toxic metals are primarily lead sulphides and sulphates, zinc sulphides, and, less frequently, zinc, lead, and iron oxides.