Sleep Stage Classification Via Multi-View Based Self-Supervised Contrastive Learning of EEG

脑电图 计算机科学 人工智能 睡眠阶段 阶段(地层学) 睡眠(系统调用) 模式识别(心理学) 语音识别 机器学习 自然语言处理 心理学 多导睡眠图 神经科学 生物 操作系统 古生物学
作者
Chen Zhao,Wei Wu,Haoyi Zhang,Ruiyan Zhang,Xinyue Zheng,Xiangzeng Kong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/jbhi.2024.3432633
摘要

Self-supervised learning (SSL) is a challenging task in sleep stage classification (SSC) that is capable of mining valuable representations from unlabeled data. However, traditional SSL methods typically focus on single-view learning and do not fully exploit the interactions among information across multiple views. In this study, we focused on a multi-domain view of the same EEG signal and developed a self-supervised multi-view representation learning framework via time series and time-frequency contrasting (MV-TTFC). In the MV-TTFC framework, we built-in a cross-domain view contrastive learning prediction task to establish connections between the temporal view and time-frequency (TF) view, thereby enhancing the information exchange between multiple views. In addition, to improve the quality of the TF view inputs, we introduced an enhanced multisynchrosqueezing transform, which can create high energy concentration TF image views to compensate for the inaccurate representations in traditional TF processing techniques. Finally, integrating temporal, TF, and fusion space contrastive learning effectively captured the latent features in EEG signals. We evaluated MV-TTFC based on two real-world SSC datasets (SleepEDF-78 and SHHS) and compared it with baseline methods in downstream tasks. Our method exhibited state-of-the-art performance, achieving accuracies of 78.64% and 81.45% with SleepEDF-78 and SHHS, respectively, and macro F1-scores of 70.39% with SleepEDF-78 and 70.47% with SHHS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
SciGPT应助jie采纳,获得10
刚刚
3秒前
4秒前
5秒前
5秒前
He发布了新的文献求助10
5秒前
饱满山柳完成签到,获得积分10
6秒前
萧水白应助清风采纳,获得50
7秒前
Beyond发布了新的文献求助30
7秒前
能干的熊猫完成签到,获得积分20
8秒前
9秒前
9秒前
科研通AI2S应助KevKing采纳,获得10
9秒前
果果完成签到,获得积分10
11秒前
SGX发布了新的文献求助10
11秒前
11秒前
田田田完成签到,获得积分10
11秒前
二六完成签到,获得积分10
12秒前
He完成签到,获得积分10
12秒前
12秒前
丘比特应助朱宸采纳,获得10
13秒前
科目三应助悦耳的冰蝶采纳,获得10
13秒前
科研通AI2S应助风趣的黑夜采纳,获得10
13秒前
13秒前
爆米花应助淡淡的可仁采纳,获得10
14秒前
qiangy发布了新的文献求助20
14秒前
14秒前
14秒前
太阳花发布了新的文献求助10
15秒前
细心青烟发布了新的文献求助10
15秒前
CipherSage应助健忘的荔枝采纳,获得10
16秒前
鲤鱼纸鹤发布了新的文献求助10
17秒前
17秒前
17秒前
盛夏如花发布了新的文献求助10
18秒前
jie发布了新的文献求助10
19秒前
jackten发布了新的文献求助10
19秒前
糟糕的雨莲关注了科研通微信公众号
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310502
求助须知:如何正确求助?哪些是违规求助? 2943362
关于积分的说明 8514240
捐赠科研通 2618611
什么是DOI,文献DOI怎么找? 1431244
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649616