Sleep Stage Classification Via Multi-View Based Self-Supervised Contrastive Learning of EEG

脑电图 计算机科学 人工智能 睡眠阶段 阶段(地层学) 睡眠(系统调用) 模式识别(心理学) 语音识别 机器学习 自然语言处理 心理学 多导睡眠图 神经科学 古生物学 生物 操作系统
作者
Chen Zhao,Wei Wu,Haoyi Zhang,Ruiyan Zhang,Xinyue Zheng,Xiangzeng Kong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 7068-7077 被引量:2
标识
DOI:10.1109/jbhi.2024.3432633
摘要

Self-supervised learning (SSL) is a challenging task in sleep stage classification (SSC) that is capable of mining valuable representations from unlabeled data. However, traditional SSL methods typically focus on single-view learning and do not fully exploit the interactions among information across multiple views. In this study, we focused on a multi-domain view of the same EEG signal and developed a self-supervised multi-view representation learning framework via time series and time-frequency contrasting (MV-TTFC). In the MV-TTFC framework, we built-in a cross-domain view contrastive learning prediction task to establish connections between the temporal view and time-frequency (TF) view, thereby enhancing the information exchange between multiple views. In addition, to improve the quality of the TF view inputs, we introduced an enhanced multisynchrosqueezing transform, which can create high energy concentration TF image views to compensate for the inaccurate representations in traditional TF processing techniques. Finally, integrating temporal, TF, and fusion space contrastive learning effectively captured the latent features in EEG signals. We evaluated MV-TTFC based on two real-world SSC datasets (SleepEDF-78 and SHHS) and compared it with baseline methods in downstream tasks. Our method exhibited state-of-the-art performance, achieving accuracies of 78.64% and 81.45% with SleepEDF-78 and SHHS, respectively, and macro F1-scores of 70.39% with SleepEDF-78 and 70.47% with SHHS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lu发布了新的文献求助10
刚刚
啦啦啦发布了新的文献求助10
1秒前
Hello应助sunyuhao采纳,获得10
1秒前
2秒前
3秒前
111发布了新的文献求助10
3秒前
咸鱼完成签到,获得积分10
3秒前
元寄灵发布了新的文献求助10
3秒前
dreamer完成签到,获得积分10
5秒前
5秒前
言辞完成签到,获得积分10
6秒前
6秒前
安详香岚发布了新的文献求助10
6秒前
Andy完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
water发布了新的文献求助20
8秒前
hhhhhhhhh发布了新的文献求助10
9秒前
9秒前
落落发布了新的文献求助10
9秒前
Tong完成签到,获得积分10
10秒前
Foch发布了新的文献求助10
11秒前
小雒雒完成签到,获得积分20
11秒前
九月鹰飞完成签到,获得积分10
13秒前
13秒前
明天见发布了新的文献求助10
14秒前
丰富完成签到,获得积分10
15秒前
小二郎应助Archer采纳,获得10
16秒前
17秒前
雪儿完成签到,获得积分10
17秒前
要减肥向日葵完成签到,获得积分10
17秒前
领导范儿应助啦啦啦采纳,获得10
17秒前
18秒前
19秒前
无奈的代珊完成签到 ,获得积分10
19秒前
20秒前
追寻的筝完成签到,获得积分20
20秒前
21秒前
21秒前
淡然的铭发布了新的文献求助10
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969557
求助须知:如何正确求助?哪些是违规求助? 3514377
关于积分的说明 11173836
捐赠科研通 3249692
什么是DOI,文献DOI怎么找? 1794979
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836