Retrospective motion correction for cardiac multi‐parametric mapping with dictionary matching‐based image synthesis and a low‐rank constraint

成对比较 匹配(统计) 人工智能 参数统计 模式识别(心理学) 数学 图像配准 秩(图论) 计算机科学 跟踪(教育) 约束(计算机辅助设计) 计算机视觉 图像(数学) 统计 组合数学 几何学 心理学 教育学
作者
Haiyang Chen,Yixin Emu,Juan Gao,Zhuo Chen,Ahmed Aburas,Chenxi Hu
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.30291
摘要

Abstract Purpose To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping. Methods The proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, where the former registers the multi‐contrast original images to a set of motion‐free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non‐MoCo, a pairwise registration method (Pairwise‐MI), and a groupwise registration method (pTVreg) via a free‐breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. Results The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath‐hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. Conclusion The proposed method significantly improves the motion correction accuracy and mapping quality compared with non‐MoCo and alternative image‐based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一个果儿应助rose采纳,获得30
刚刚
炙热小小发布了新的文献求助10
刚刚
刚刚
小斻也斻完成签到,获得积分10
1秒前
ZhihaoYang完成签到,获得积分10
1秒前
Orange应助何必在乎采纳,获得10
1秒前
JamesPei应助与你采纳,获得10
2秒前
2秒前
李佳政发布了新的文献求助10
2秒前
文艺的夏烟完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
lcxw1224完成签到,获得积分10
3秒前
快乐吗猪完成签到,获得积分10
3秒前
香蕉诗蕊举报123求助涉嫌违规
4秒前
4秒前
科研通AI6应助Enso采纳,获得20
4秒前
Owen应助玄魁采纳,获得10
4秒前
谨慎的翩跹完成签到,获得积分10
4秒前
4秒前
王超完成签到,获得积分20
4秒前
无极微光应助无敌小宽哥采纳,获得20
5秒前
泥巴发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
憨憨发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
一一应助楚天正阔采纳,获得10
8秒前
鳗鱼鞋垫发布了新的文献求助20
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
搜集达人应助炙热小小采纳,获得10
9秒前
稳重以冬完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653486
求助须知:如何正确求助?哪些是违规求助? 4790016
关于积分的说明 15064423
捐赠科研通 4812137
什么是DOI,文献DOI怎么找? 2574306
邀请新用户注册赠送积分活动 1529926
关于科研通互助平台的介绍 1488661