已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Retrospective motion correction for cardiac multi‐parametric mapping with dictionary matching‐based image synthesis and a low‐rank constraint

成对比较 匹配(统计) 人工智能 参数统计 模式识别(心理学) 数学 图像配准 秩(图论) 计算机科学 跟踪(教育) 约束(计算机辅助设计) 计算机视觉 图像(数学) 统计 组合数学 几何学 心理学 教育学
作者
Haiyang Chen,Yixin Emu,Juan Gao,Zhuo Chen,Ahmed Aburas,Chenxi Hu
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.30291
摘要

Abstract Purpose To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping. Methods The proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, where the former registers the multi‐contrast original images to a set of motion‐free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non‐MoCo, a pairwise registration method (Pairwise‐MI), and a groupwise registration method (pTVreg) via a free‐breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. Results The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath‐hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. Conclusion The proposed method significantly improves the motion correction accuracy and mapping quality compared with non‐MoCo and alternative image‐based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗完成签到,获得积分10
刚刚
chaichi完成签到,获得积分10
2秒前
杳鸢应助逻辑猫采纳,获得20
2秒前
77777完成签到 ,获得积分10
3秒前
单纯的爆米花完成签到,获得积分10
5秒前
5秒前
10秒前
搜集达人应助科研通管家采纳,获得20
11秒前
脑洞疼应助科研通管家采纳,获得30
11秒前
11秒前
科目三应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
pppshoot发布了新的文献求助10
11秒前
阿曾完成签到 ,获得积分10
12秒前
zorro3574发布了新的文献求助10
13秒前
孤独的问凝完成签到,获得积分10
13秒前
14秒前
修辛完成签到 ,获得积分10
15秒前
搜集达人应助专注凌文采纳,获得10
15秒前
aliuliu发布了新的文献求助10
15秒前
细心青雪完成签到 ,获得积分10
15秒前
111发布了新的文献求助10
17秒前
18秒前
21秒前
陆艳梅2023发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
专注凌文发布了新的文献求助10
27秒前
绵绵完成签到 ,获得积分10
27秒前
李嘉琪发布了新的文献求助10
28秒前
ADDDD发布了新的文献求助10
30秒前
C_Cppp完成签到 ,获得积分10
30秒前
zorro3574发布了新的文献求助10
30秒前
古月完成签到,获得积分10
31秒前
脑洞疼应助长情的巧曼采纳,获得10
33秒前
Owen应助李嘉琪采纳,获得10
35秒前
彭于晏应助称心的以柳采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499843
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428763
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382