Retrospective motion correction for cardiac multi‐parametric mapping with dictionary matching‐based image synthesis and a low‐rank constraint

成对比较 匹配(统计) 人工智能 参数统计 模式识别(心理学) 数学 图像配准 秩(图论) 计算机科学 跟踪(教育) 约束(计算机辅助设计) 计算机视觉 图像(数学) 统计 组合数学 教育学 心理学 几何学
作者
Haiyang Chen,Yixin Emu,Juan Gao,Zhuo Chen,Ahmed Aburas,Chenxi Hu
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.30291
摘要

Abstract Purpose To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping. Methods The proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, where the former registers the multi‐contrast original images to a set of motion‐free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non‐MoCo, a pairwise registration method (Pairwise‐MI), and a groupwise registration method (pTVreg) via a free‐breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. Results The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath‐hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. Conclusion The proposed method significantly improves the motion correction accuracy and mapping quality compared with non‐MoCo and alternative image‐based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Harold发布了新的文献求助10
刚刚
刚刚
Lucky完成签到,获得积分10
刚刚
1秒前
www完成签到,获得积分10
1秒前
慕青应助糊涂的中恶采纳,获得10
1秒前
2秒前
安静语山发布了新的文献求助30
2秒前
今后应助雷行云采纳,获得10
3秒前
无花果应助阿强采纳,获得10
4秒前
端庄的吐司完成签到,获得积分10
5秒前
x5kyi发布了新的文献求助10
5秒前
6秒前
所所应助大君哥采纳,获得10
6秒前
7秒前
7秒前
自信天发布了新的文献求助30
8秒前
floating发布了新的文献求助10
8秒前
zxl完成签到,获得积分10
8秒前
9秒前
11秒前
你的风筝应助chenpy1990采纳,获得10
11秒前
JamesPei应助姆姆采纳,获得10
11秒前
hczx完成签到,获得积分10
11秒前
12秒前
挖掘机给spinor的求助进行了留言
12秒前
章鱼大丸子完成签到,获得积分10
12秒前
zxl发布了新的文献求助10
13秒前
14秒前
yyq完成签到,获得积分20
14秒前
14秒前
Lucas应助飞快的诗槐采纳,获得10
15秒前
16秒前
16秒前
Bran发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
超chao发布了新的文献求助10
17秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951401
求助须知:如何正确求助?哪些是违规求助? 3496844
关于积分的说明 11084706
捐赠科研通 3227245
什么是DOI,文献DOI怎么找? 1784364
邀请新用户注册赠送积分活动 868370
科研通“疑难数据库(出版商)”最低求助积分说明 801110