A theoretical study of thermal properties and structural evolution in binary carbonates phase change material: Machine learning-enhanced sampling strategy

熔盐 热扩散率 扩散 分子动力学 粘度 热导率 热力学 离子半径 热能储存 离子 材料科学 离子键合 相(物质) 热能 化学 化学物理 物理 计算化学 有机化学
作者
Heqing Tian,Wenguang Zhang,Chaxiu Guo
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:161 (14)
标识
DOI:10.1063/5.0219401
摘要

Thermal energy storage and utilization has been widely concerned due to the intermittency, renewability, and economy of renewable energy. In this paper, the potential energy function of binary Na2CO3–K2CO3 salt was first constructed using the Deep Potential GENerator (DPGEN) enhanced sampling method. Deep potential molecular dynamics simulations were performed to calculate the thermal properties and structural evolution of binary carbonates. The results show that as the temperature increases from 1073 to 1273 K, the viscosity and thermal conductivity decrease from 5.011 mPa s and 0.502 W/(m K) to 2.526 mPa s and 0.481 W/(m K), respectively. The decrease in viscosity is related to the distance and interaction between the molten salt ions. In addition, the diffusion coefficients, energy barriers, ionic radius, angular distribution function, and coordination number of molten salt were calculated and analyzed. The CO32− exhibits a stable planar triangular structure. The ionic radius of Na+ is smaller than that of K+, which makes Na+ suffer less spatial hindrance during motion and has a higher diffusion coefficient. The energy barriers that Na+ needs to overcome to escape the Coulomb force is greater than that of K+ ions, so molten salt containing Na+ may possess greater heat storage potential. We believe that the potential function constructed with DPGEN enhanced sampling strategy can provide more convincing results for predicting the thermal properties of molten salts. This paper aims to provide a technical route to develop the novel complex molten salt phase change material for thermal energy storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助端庄冬日采纳,获得30
刚刚
天天开心发布了新的文献求助10
刚刚
浅色墨水完成签到,获得积分10
1秒前
曹博盛完成签到,获得积分10
2秒前
2秒前
hhhblabla应助LEO采纳,获得10
3秒前
ccccc发布了新的文献求助10
5秒前
6秒前
Miley完成签到 ,获得积分10
7秒前
7秒前
科研通AI5应助myy采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
1+1应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
司空豁应助科研通管家采纳,获得10
8秒前
1+1应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
司空豁应助科研通管家采纳,获得10
9秒前
CAOHOU应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
传奇3应助刻苦的源智采纳,获得10
11秒前
11秒前
ran完成签到,获得积分10
12秒前
周周发布了新的文献求助10
12秒前
Alex完成签到,获得积分10
13秒前
ding应助Skywalker采纳,获得10
13秒前
aaa142hehe完成签到 ,获得积分10
14秒前
糊涂的万发布了新的文献求助10
16秒前
冯梦梦发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
充电宝应助知识探索家采纳,获得10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672293
求助须知:如何正确求助?哪些是违规求助? 3228627
关于积分的说明 9781377
捐赠科研通 2939114
什么是DOI,文献DOI怎么找? 1610578
邀请新用户注册赠送积分活动 760682
科研通“疑难数据库(出版商)”最低求助积分说明 736174