Anchoring temporal convolutional networks for epileptic seizure prediction

癫痫 发作性 脑电图 计算机科学 癫痫发作 人工智能 卷积神经网络 模式识别(心理学) 特征(语言学) 灵敏度(控制系统) 特征提取 癫痫外科 心理学 神经科学 语言学 哲学 电子工程 工程类
作者
S.P. Venu Madhava Rao,Miaomiao Liu,Yin Huang,Hongye Yang,Jiarui Liang,Jiayu Lu,Yan Niu,Bin Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (6): 066008-066008
标识
DOI:10.1088/1741-2552/ad8bf3
摘要

Abstract Objective . Accurate and timely prediction of epileptic seizures is crucial for empowering patients to mitigate their impact or prevent them altogether. Current studies predominantly focus on short-term seizure predictions, which causes the prediction time to be shorter than the onset of antiepileptic, thus failing to prevent seizures. However, longer epilepsy prediction faces the problem that as the preictal period lengthens, it increasingly resembles the interictal period, complicating differentiation. Approach . To address these issues, we employ the sample entropy method for feature extraction from electroencephalography (EEG) signals. Subsequently, we introduce the anchoring temporal convolutional networks (ATCN) model for longer-term, patient-specific epilepsy prediction. ATCN utilizes dilated causal convolutional networks to learn time-dependent features from previous data, capturing temporal causal correlations within and between samples. Additionally, the model also incorporates anchoring data to enhance the performance of epilepsy prediction further. Finally, we proposed a multilayer sliding window prediction algorithm for seizure alarms. Main results . Evaluation on the Freiburg intracranial EEG dataset shows our approach achieves 100% sensitivity, a false prediction rate (FPR) of 0.09 per hour, and an average prediction time (APT) of 98.92 min. Using the CHB-MIT scalp EEG dataset, we achieve 97.44% sensitivity, a FPR of 0.12 per hour, and an APT of 93.54 min. Significance . These results demonstrate that our approach is adequate for seizure prediction over a more extended prediction range on intracranial and scalp EEG datasets. The APT of our approach exceeds the typical onset time of antiepileptic. This approach is particularly beneficial for patients who need to take medication at regular intervals, as they may only need to take their medication when our method issues an alarm. This capability has the potential to prevent seizures, which will greatly improve patients’ quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mate发布了新的文献求助30
刚刚
兔兔发布了新的文献求助10
刚刚
1秒前
李健的小迷弟应助谭诗语采纳,获得10
1秒前
冉冰发布了新的文献求助50
2秒前
2秒前
一昂羊发布了新的文献求助30
3秒前
3秒前
3秒前
3秒前
3秒前
TAO完成签到,获得积分10
4秒前
4秒前
4秒前
KKKK发布了新的文献求助20
5秒前
5秒前
cc2941发布了新的文献求助10
5秒前
脑洞疼应助大方豌豆采纳,获得20
5秒前
xwzz发布了新的文献求助10
6秒前
酷波er应助玩命的毛衣采纳,获得10
6秒前
顺利平文发布了新的文献求助10
7秒前
7秒前
7秒前
hua完成签到,获得积分10
7秒前
TAO发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
ding应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
科研通AI5应助欣喜大地采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
科研通AI5应助黄焖鸡米饭采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得20
9秒前
dellajj发布了新的文献求助10
10秒前
11秒前
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749193
求助须知:如何正确求助?哪些是违规求助? 3292446
关于积分的说明 10076739
捐赠科研通 3007912
什么是DOI,文献DOI怎么找? 1651897
邀请新用户注册赠送积分活动 786893
科研通“疑难数据库(出版商)”最低求助积分说明 751861