Towards a more realistic approach to the problem of detecting fuel leaks in filling stations: Mixed time windows

计算机科学 数据挖掘 运筹学 工程类
作者
Pedro Toledo,Rafael Arnay,Javier Hernández,M. Sigut,Silvia Alayón
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:468: 143094-143094 被引量:2
标识
DOI:10.1016/j.jclepro.2024.143094
摘要

The early detection of fuel leaks in filling stations is crucial to minimize environmental risks, such as soil and groundwater contamination. There are some commercial products for fuel leakage detection based on statistical analysis of data from station inventory books. Although they solve the tackled problem, they have some important drawbacks, such as their high price, and issues related to the privacy of station data, which must be shared with the company owning the reconciliation technology. In this work, a solution based on Artificial Intelligence is proposed to address this problem. Machine Learning techniques, specifically two-class supervised classifiers, are applied to data extracted from inventory books of real petrol stations. The classification models used in this paper are trained and tested with real data of days without leaks and simulated data of days with leaks. Thus, the more representative of reality these data are, the better the classifiers will work when implemented in a real filling station. In this sense, the most novel contribution of this paper is the way in which the training sets are constructed to achieve a realistic scenario. These sets are composed of time data windows in which the leak can begin on any day within the window, not necessarily on the first day, as the authors had assumed in a previous contribution. Therefore, they are mixed windows containing a variable number of non-leaking and leaking days. In addition, the design of these data sets complies with the requirements of the current European standard UNE-EN 13160–5. This allows the classifiers to work under even more realistic conditions and thus increase the practical applicability of their results. This work demonstrates that by using two-class classifiers it is possible not only to comply with the standard in terms of the maximum allowable ratio of false positives and false negatives, but also to detect the leak in a shorter time than that established in the norm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lexi完成签到,获得积分10
2秒前
cdsd发布了新的文献求助10
5秒前
月亮完成签到,获得积分10
6秒前
ssk完成签到,获得积分10
6秒前
Criminology34应助ceeray23采纳,获得20
9秒前
Damon完成签到,获得积分10
9秒前
Lotus完成签到,获得积分10
12秒前
天成完成签到 ,获得积分10
13秒前
bkagyin应助Wang采纳,获得10
14秒前
20秒前
GaoChenxi完成签到 ,获得积分10
24秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
传奇3应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
GPTea应助科研通管家采纳,获得150
26秒前
26秒前
cc发布了新的文献求助10
27秒前
28秒前
丁老三完成签到 ,获得积分10
30秒前
谨慎翎完成签到 ,获得积分10
32秒前
非我完成签到 ,获得积分0
32秒前
Cc完成签到 ,获得积分10
33秒前
33秒前
南风南下完成签到 ,获得积分10
34秒前
科研牛马完成签到 ,获得积分10
34秒前
夏天的风发布了新的文献求助10
38秒前
lll完成签到,获得积分20
42秒前
Loooong完成签到,获得积分0
42秒前
欢喜板凳完成签到 ,获得积分10
44秒前
南星完成签到 ,获得积分10
45秒前
47秒前
霸气的香菇完成签到 ,获得积分10
48秒前
超帅蓝血完成签到 ,获得积分10
48秒前
wang5945发布了新的文献求助10
52秒前
小个白完成签到,获得积分10
52秒前
54秒前
电子屎壳郎完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5174909
求助须知:如何正确求助?哪些是违规求助? 4364271
关于积分的说明 13586371
捐赠科研通 4213198
什么是DOI,文献DOI怎么找? 2310980
邀请新用户注册赠送积分活动 1309946
关于科研通互助平台的介绍 1257789