Towards a more realistic approach to the problem of detecting fuel leaks in filling stations: Mixed time windows

计算机科学 数据挖掘 运筹学 工程类
作者
Pedro Toledo,Rafael Arnay,Javier Hernández,M. Sigut,Silvia Alayón
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:468: 143094-143094 被引量:1
标识
DOI:10.1016/j.jclepro.2024.143094
摘要

The early detection of fuel leaks in filling stations is crucial to minimize environmental risks, such as soil and groundwater contamination. There are some commercial products for fuel leakage detection based on statistical analysis of data from station inventory books. Although they solve the tackled problem, they have some important drawbacks, such as their high price, and issues related to the privacy of station data, which must be shared with the company owning the reconciliation technology. In this work, a solution based on Artificial Intelligence is proposed to address this problem. Machine Learning techniques, specifically two-class supervised classifiers, are applied to data extracted from inventory books of real petrol stations. The classification models used in this paper are trained and tested with real data of days without leaks and simulated data of days with leaks. Thus, the more representative of reality these data are, the better the classifiers will work when implemented in a real filling station. In this sense, the most novel contribution of this paper is the way in which the training sets are constructed to achieve a realistic scenario. These sets are composed of time data windows in which the leak can begin on any day within the window, not necessarily on the first day, as the authors had assumed in a previous contribution. Therefore, they are mixed windows containing a variable number of non-leaking and leaking days. In addition, the design of these data sets complies with the requirements of the current European standard UNE-EN 13160–5. This allows the classifiers to work under even more realistic conditions and thus increase the practical applicability of their results. This work demonstrates that by using two-class classifiers it is possible not only to comply with the standard in terms of the maximum allowable ratio of false positives and false negatives, but also to detect the leak in a shorter time than that established in the norm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
酷波er应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得30
1秒前
波比冰苏打完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
笨笨猪完成签到,获得积分10
3秒前
4秒前
洋芋片完成签到,获得积分20
5秒前
想喝奶茶发布了新的文献求助10
5秒前
LONG关注了科研通微信公众号
6秒前
7秒前
9秒前
10秒前
ALDRC完成签到,获得积分10
10秒前
123456hhh完成签到,获得积分10
10秒前
10秒前
NexusExplorer应助Wish采纳,获得10
12秒前
huanghui发布了新的文献求助10
13秒前
sia完成签到,获得积分10
13秒前
lyh2234发布了新的文献求助10
14秒前
仙林AK47发布了新的文献求助10
14秒前
一二三发布了新的文献求助10
15秒前
Apocalypse_zjz完成签到,获得积分10
15秒前
16秒前
芝麻糊应助Felix采纳,获得30
16秒前
Daisy完成签到,获得积分10
20秒前
纯真采蓝完成签到,获得积分10
20秒前
21秒前
EarlyBird完成签到,获得积分10
22秒前
赘婿应助一二三采纳,获得10
22秒前
想喝奶茶完成签到,获得积分10
23秒前
24秒前
单纯的芷蝶完成签到,获得积分10
24秒前
25秒前
隐形曼青应助许许采纳,获得10
28秒前
28秒前
30秒前
kalala发布了新的文献求助10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461413
求助须知:如何正确求助?哪些是违规求助? 3055059
关于积分的说明 9046383
捐赠科研通 2744996
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695281