Towards a more realistic approach to the problem of detecting fuel leaks in filling stations: Mixed time windows

计算机科学 数据挖掘 运筹学 工程类
作者
Pedro Toledo,Rafael Arnay,Javier Hernández,M. Sigut,Silvia Alayón
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:468: 143094-143094 被引量:2
标识
DOI:10.1016/j.jclepro.2024.143094
摘要

The early detection of fuel leaks in filling stations is crucial to minimize environmental risks, such as soil and groundwater contamination. There are some commercial products for fuel leakage detection based on statistical analysis of data from station inventory books. Although they solve the tackled problem, they have some important drawbacks, such as their high price, and issues related to the privacy of station data, which must be shared with the company owning the reconciliation technology. In this work, a solution based on Artificial Intelligence is proposed to address this problem. Machine Learning techniques, specifically two-class supervised classifiers, are applied to data extracted from inventory books of real petrol stations. The classification models used in this paper are trained and tested with real data of days without leaks and simulated data of days with leaks. Thus, the more representative of reality these data are, the better the classifiers will work when implemented in a real filling station. In this sense, the most novel contribution of this paper is the way in which the training sets are constructed to achieve a realistic scenario. These sets are composed of time data windows in which the leak can begin on any day within the window, not necessarily on the first day, as the authors had assumed in a previous contribution. Therefore, they are mixed windows containing a variable number of non-leaking and leaking days. In addition, the design of these data sets complies with the requirements of the current European standard UNE-EN 13160–5. This allows the classifiers to work under even more realistic conditions and thus increase the practical applicability of their results. This work demonstrates that by using two-class classifiers it is possible not only to comply with the standard in terms of the maximum allowable ratio of false positives and false negatives, but also to detect the leak in a shorter time than that established in the norm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小花发布了新的文献求助10
刚刚
1秒前
三石发布了新的文献求助10
1秒前
生姜发布了新的文献求助10
2秒前
坛坛发布了新的文献求助10
2秒前
东皇太憨完成签到,获得积分10
2秒前
我是老大应助欢欢采纳,获得10
2秒前
Sunthief发布了新的文献求助30
3秒前
yusuf完成签到,获得积分10
3秒前
rookieLi应助kento采纳,获得30
3秒前
传奇3应助li采纳,获得10
3秒前
bluesky完成签到,获得积分10
4秒前
王平完成签到,获得积分10
5秒前
留胡子的白风完成签到,获得积分10
5秒前
我是老大应助大叉烧采纳,获得10
5秒前
6秒前
6秒前
虎虎生威完成签到,获得积分10
7秒前
8秒前
8秒前
时闲应助头发很多采纳,获得10
8秒前
9秒前
maxxie1017完成签到,获得积分10
9秒前
ping完成签到,获得积分10
10秒前
11秒前
bkagyin应助陈博士采纳,获得10
11秒前
yixing完成签到,获得积分10
11秒前
你晖哥发布了新的文献求助10
11秒前
为你博弈发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
如意土豆完成签到 ,获得积分10
13秒前
科目三应助西北大灰狼采纳,获得30
13秒前
九三发布了新的文献求助10
13秒前
14秒前
15秒前
香蕉觅云应助demo采纳,获得10
15秒前
文静外套完成签到,获得积分10
15秒前
ping发布了新的文献求助10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653