数学
操作员(生物学)
相(物质)
纯数学
数学分析
牙石(牙科)
量子力学
物理
生物化学
医学
转录因子
基因
抑制因子
化学
牙科
作者
Chun‐Bo Lian,Bin Ge,Qing‐Hai Cao,Yu Zhang
标识
DOI:10.12775/tmna.2024.013
摘要
In this paper we study a double phase problem which involves the double phase operator, and the nonlinear term has an oscillatory behavior. By using variational methods and the theory of the Musielak-Orlicz-Sobolev space, we establish the existence of infinitely many solutions whose $W_0^{1,H}(\Omega)$-norms tend to zero (to infinity, respectively) whenever the nonlinearity oscillates at zero (at infinity, respectively).
科研通智能强力驱动
Strongly Powered by AbleSci AI