Bayesian optimization algorithms for accelerator physics

贝叶斯优化 计算机科学 杠杆(统计) 最优化问题 贝叶斯概率 数学优化 机器学习 算法 人工智能 数学
作者
Ryan Roussel,Auralee Edelen,Tobias Boltz,Dylan Kennedy,Zhe Zhang,Fuhao Ji,Xiaobiao Huang,Daniel Ratner,Andrea Santamaría García,Chenran Xu,Jan Kaiser,Á. Ferran Pousa,Annika Eichler,Jannis O. Lübsen,Natalie M. Isenberg,Yuan Gao,Nikita Kuklev,José-Fernán Martí­nez-Ortega,B. Mustapha,Verena Kain,Christopher Mayes,Weijian Lin,Simone Liuzzo,Jason St. John,M. J. V. Streeter,Rémi Lehe,Willie Neiswanger
出处
期刊:Physical review accelerators and beams [American Physical Society]
卷期号:27 (8) 被引量:4
标识
DOI:10.1103/physrevaccelbeams.27.084801
摘要

Accelerator physics relies on numerical algorithms to solve optimization problems in online accelerator control and tasks such as experimental design and model calibration in simulations. The effectiveness of optimization algorithms in discovering ideal solutions for complex challenges with limited resources often determines the problem complexity these methods can address. The accelerator physics community has recognized the advantages of Bayesian optimization algorithms, which leverage statistical surrogate models of objective functions to effectively address complex optimization challenges, especially in the presence of noise during accelerator operation and in resource-intensive physics simulations. In this review article, we offer a conceptual overview of applying Bayesian optimization techniques toward solving optimization problems in accelerator physics. We begin by providing a straightforward explanation of the essential components that make up Bayesian optimization techniques. We then give an overview of current and previous work applying and modifying these techniques to solve accelerator physics challenges. Finally, we explore practical implementation strategies for Bayesian optimization algorithms to maximize their performance, enabling users to effectively address complex optimization challenges in real-time beam control and accelerator design. Published by the American Physical Society 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
飒飒完成签到,获得积分10
2秒前
2秒前
2秒前
自信眼睛完成签到 ,获得积分10
3秒前
5秒前
Davy_Y发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
快乐的寄容完成签到,获得积分10
6秒前
成就铸海完成签到,获得积分10
6秒前
伶俐灵发布了新的文献求助10
6秒前
7秒前
脑洞疼应助牛牛眉目采纳,获得10
7秒前
bofu发布了新的文献求助80
7秒前
小锋完成签到 ,获得积分10
8秒前
Elsa完成签到,获得积分10
8秒前
8秒前
cindy发布了新的文献求助10
8秒前
IvanMcRae应助张萌采纳,获得10
8秒前
Davy_Y完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
快乐的小天鹅完成签到,获得积分10
10秒前
Jason发布了新的文献求助10
10秒前
11秒前
万能图书馆应助小李采纳,获得10
13秒前
bofu发布了新的文献求助10
14秒前
小张完成签到,获得积分10
15秒前
柯一一应助淡淡夕阳采纳,获得10
15秒前
15秒前
CHL5722发布了新的文献求助20
15秒前
石斑鱼完成签到,获得积分10
16秒前
酷酷完成签到,获得积分10
17秒前
wf关注了科研通微信公众号
17秒前
Bdcy完成签到 ,获得积分10
18秒前
深情安青应助奋斗的俊驰采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105