Rapid Inverse Parameter Inference Using Physics-Informed Neural Networks

推论 人工神经网络 反向 统计物理学 计算机科学 人工智能 物理 机器学习 数学 几何学
作者
Malik Hassanaly,Peter J. Weddle,Corey R. Randall,Eric J. Dufek,Kandler Smith
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (2): 345-345
标识
DOI:10.1149/ma2024-012345mtgabs
摘要

As Li-ion batteries become more essential in today's economy, tools need to be developed to accurately and rapidly diagnose a battery's internal state-of-health. Using a Li-ion battery's (high-rate) voltage response, it is proposed to determine a battery's internal state through Bayesian calibration. However, Bayesian calibration is notoriously slow and requires thousands of model runs. To accelerate parameter inference using Bayesian calibration, a surrogate model is developed to replace the underlying physics-based Li-ion model. Developing a surrogate model for rapid Bayesian calibration analysis is discussed for both the single particle model (SPM) and the pseudo two-dimensional (P2D) model. Surrogate models are constructed using physics-informed neural networks (PINNs) that encode the influence of internal properties on observed voltage responses. In practice, a neural network can be trained by: 1) using simulation results of the physics-based model (i.e., a data-loss approach); 2) using the residuals of the governing equations themselves (i.e., a physics-loss approach); or 3) using a combination of simulation results and governing equation residuals. In the present work, PINNs are developed using a variety of training losses and neural network architectures. In this analysis, it is shown that a PINN surrogate model can be reliably trained with only physics-informed loss. However, using a coupled data-informed and physics-loss approach produced the most accurate PINNs. Figure~\ref{fig:spm_2d} illustrates the absolute relative errors of trained PINN networks using several different training losses and neural network architectures. After determining a consistent training strategy for both the SPM and P2D PINN surrogate models, the PINNs are extended to determine additional internal state-of-health parameters. As more and more parameters were introduced, the PINN training suffered from ``the curse of dimensionality", which was mitigated by using a hierarchical training approach (where a PINN trained with fewer variable model parameters was used to train a PINN with more variable model parameters). Next, the high-dimensionality PINN surrogates are then integrated into Bayesian calibration schemes to identify internal Li-ion battery properties from experimentally measured voltages. Interpreting the high-dimensional parameter posteriors is discussed with respect to model error, parameter prior choices, and experimental errors. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
奥特超曼应助天边采纳,获得10
7秒前
8秒前
10秒前
10秒前
好的番茄loconte完成签到,获得积分10
10秒前
11秒前
贪玩星发布了新的文献求助10
13秒前
薛家泰完成签到 ,获得积分10
13秒前
驾驶人意图预测完成签到,获得积分10
14秒前
砰砰完成签到 ,获得积分10
15秒前
16秒前
赘婿应助好的番茄loconte采纳,获得10
16秒前
小蘑菇应助Cookies采纳,获得10
16秒前
pgdddh发布了新的文献求助10
17秒前
橙子发布了新的文献求助10
19秒前
21秒前
dd完成签到,获得积分10
23秒前
24秒前
bkagyin应助受伤翠容采纳,获得10
25秒前
吴亦凡女朋友完成签到,获得积分10
26秒前
啾栖发布了新的文献求助30
27秒前
时尚战斗机应助wang采纳,获得10
28秒前
恍若发布了新的文献求助10
29秒前
我又可以了完成签到,获得积分10
32秒前
陈思完成签到,获得积分10
33秒前
Lzt发布了新的文献求助10
34秒前
34秒前
孙福禄应助恍若采纳,获得10
37秒前
39秒前
善学以致用应助李李李采纳,获得10
40秒前
陈杭鑫应助lc采纳,获得10
41秒前
merrylake完成签到 ,获得积分10
41秒前
41秒前
ccccccc发布了新的文献求助10
41秒前
无情向薇发布了新的文献求助10
44秒前
45秒前
临澈完成签到,获得积分10
46秒前
47秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652