Rapid Inverse Parameter Inference Using Physics-Informed Neural Networks

推论 人工神经网络 反向 统计物理学 计算机科学 人工智能 物理 机器学习 数学 几何学
作者
Malik Hassanaly,Peter J. Weddle,Corey R. Randall,Eric J. Dufek,Kandler Smith
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (2): 345-345
标识
DOI:10.1149/ma2024-012345mtgabs
摘要

As Li-ion batteries become more essential in today's economy, tools need to be developed to accurately and rapidly diagnose a battery's internal state-of-health. Using a Li-ion battery's (high-rate) voltage response, it is proposed to determine a battery's internal state through Bayesian calibration. However, Bayesian calibration is notoriously slow and requires thousands of model runs. To accelerate parameter inference using Bayesian calibration, a surrogate model is developed to replace the underlying physics-based Li-ion model. Developing a surrogate model for rapid Bayesian calibration analysis is discussed for both the single particle model (SPM) and the pseudo two-dimensional (P2D) model. Surrogate models are constructed using physics-informed neural networks (PINNs) that encode the influence of internal properties on observed voltage responses. In practice, a neural network can be trained by: 1) using simulation results of the physics-based model (i.e., a data-loss approach); 2) using the residuals of the governing equations themselves (i.e., a physics-loss approach); or 3) using a combination of simulation results and governing equation residuals. In the present work, PINNs are developed using a variety of training losses and neural network architectures. In this analysis, it is shown that a PINN surrogate model can be reliably trained with only physics-informed loss. However, using a coupled data-informed and physics-loss approach produced the most accurate PINNs. Figure~\ref{fig:spm_2d} illustrates the absolute relative errors of trained PINN networks using several different training losses and neural network architectures. After determining a consistent training strategy for both the SPM and P2D PINN surrogate models, the PINNs are extended to determine additional internal state-of-health parameters. As more and more parameters were introduced, the PINN training suffered from ``the curse of dimensionality", which was mitigated by using a hierarchical training approach (where a PINN trained with fewer variable model parameters was used to train a PINN with more variable model parameters). Next, the high-dimensionality PINN surrogates are then integrated into Bayesian calibration schemes to identify internal Li-ion battery properties from experimentally measured voltages. Interpreting the high-dimensional parameter posteriors is discussed with respect to model error, parameter prior choices, and experimental errors. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酒贰发布了新的文献求助10
刚刚
1秒前
1秒前
壮观之瑶发布了新的文献求助10
1秒前
1秒前
迅速罡完成签到,获得积分20
1秒前
呆萌荧发布了新的文献求助20
2秒前
共享精神应助林海采纳,获得10
3秒前
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
迅速罡发布了新的文献求助10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344557
求助须知:如何正确求助?哪些是违规求助? 4479749
关于积分的说明 13944365
捐赠科研通 4376951
什么是DOI,文献DOI怎么找? 2404998
邀请新用户注册赠送积分活动 1397528
关于科研通互助平台的介绍 1369880