Rapid Inverse Parameter Inference Using Physics-Informed Neural Networks

推论 人工神经网络 反向 统计物理学 计算机科学 人工智能 物理 机器学习 数学 几何学
作者
Malik Hassanaly,Peter J. Weddle,Corey R. Randall,Eric J. Dufek,Kandler Smith
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (2): 345-345
标识
DOI:10.1149/ma2024-012345mtgabs
摘要

As Li-ion batteries become more essential in today's economy, tools need to be developed to accurately and rapidly diagnose a battery's internal state-of-health. Using a Li-ion battery's (high-rate) voltage response, it is proposed to determine a battery's internal state through Bayesian calibration. However, Bayesian calibration is notoriously slow and requires thousands of model runs. To accelerate parameter inference using Bayesian calibration, a surrogate model is developed to replace the underlying physics-based Li-ion model. Developing a surrogate model for rapid Bayesian calibration analysis is discussed for both the single particle model (SPM) and the pseudo two-dimensional (P2D) model. Surrogate models are constructed using physics-informed neural networks (PINNs) that encode the influence of internal properties on observed voltage responses. In practice, a neural network can be trained by: 1) using simulation results of the physics-based model (i.e., a data-loss approach); 2) using the residuals of the governing equations themselves (i.e., a physics-loss approach); or 3) using a combination of simulation results and governing equation residuals. In the present work, PINNs are developed using a variety of training losses and neural network architectures. In this analysis, it is shown that a PINN surrogate model can be reliably trained with only physics-informed loss. However, using a coupled data-informed and physics-loss approach produced the most accurate PINNs. Figure~\ref{fig:spm_2d} illustrates the absolute relative errors of trained PINN networks using several different training losses and neural network architectures. After determining a consistent training strategy for both the SPM and P2D PINN surrogate models, the PINNs are extended to determine additional internal state-of-health parameters. As more and more parameters were introduced, the PINN training suffered from ``the curse of dimensionality", which was mitigated by using a hierarchical training approach (where a PINN trained with fewer variable model parameters was used to train a PINN with more variable model parameters). Next, the high-dimensionality PINN surrogates are then integrated into Bayesian calibration schemes to identify internal Li-ion battery properties from experimentally measured voltages. Interpreting the high-dimensional parameter posteriors is discussed with respect to model error, parameter prior choices, and experimental errors. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfj发布了新的文献求助10
1秒前
ding应助1111采纳,获得10
1秒前
1秒前
一一一多发布了新的文献求助10
1秒前
嗯哼应助科研求求你嘛采纳,获得20
1秒前
苗苗会喵喵完成签到,获得积分10
2秒前
亚秋发布了新的文献求助10
3秒前
FashionBoy应助帅气的小懒虫采纳,获得30
3秒前
3秒前
徐小二发布了新的文献求助10
3秒前
4秒前
hakuna发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
6秒前
可爱的函函应助vikonk采纳,获得10
6秒前
不知道吃什么完成签到,获得积分10
7秒前
COCO发布了新的文献求助10
8秒前
harvey发布了新的文献求助10
9秒前
香蕉觅云应助钱钱钱采纳,获得10
9秒前
wbb发布了新的文献求助10
10秒前
科研通AI2S应助浅暖采纳,获得10
10秒前
刘院给刘院的求助进行了留言
10秒前
刻苦海露发布了新的文献求助30
10秒前
RMgX完成签到,获得积分10
11秒前
Charlieite发布了新的文献求助10
11秒前
boging完成签到,获得积分10
11秒前
王梓磬发布了新的文献求助10
12秒前
赘婿应助harvey采纳,获得10
12秒前
英姑应助徐小二采纳,获得10
12秒前
13秒前
yyyjx完成签到,获得积分10
13秒前
13秒前
13秒前
牛万全完成签到,获得积分10
13秒前
ding应助胡博士采纳,获得10
14秒前
15秒前
15秒前
zzzzzzz完成签到,获得积分10
15秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222200
求助须知:如何正确求助?哪些是违规求助? 2870768
关于积分的说明 8172106
捐赠科研通 2537838
什么是DOI,文献DOI怎么找? 1369757
科研通“疑难数据库(出版商)”最低求助积分说明 645582
邀请新用户注册赠送积分活动 619333