Using Data-Driven Algorithms with Large-Scale Plasma Proteomic Data to Discover Novel Biomarkers for Diagnosing Depression

萧条(经济学) 机器学习 生命银行 接收机工作特性 人工智能 计算机科学 小桶 比例(比率) 生物信息学 生物 物理 宏观经济学 量子力学 经济 生物化学 基因表达 转录组 基因
作者
Simeng Ma,Ruiling Li,Qian Gong,Honggang Lv,Zipeng Deng,Beibei Wang,Lihua Yao,Lijun Kang,Dan Xiang,Jun Yang,Zhongchun Liu
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:23 (9): 4043-4054
标识
DOI:10.1021/acs.jproteome.4c00389
摘要

Given recent technological advances in proteomics, it is now possible to quantify plasma proteomes in large cohorts of patients to screen for biomarkers and to guide the early diagnosis and treatment of depression. Here we used CatBoost machine learning to model and discover biomarkers of depression in UK Biobank data sets (depression n = 4,479, healthy control n = 19,821). CatBoost was employed for model construction, with Shapley Additive Explanations (SHAP) being utilized to interpret the resulting model. Model performance was corroborated through 5-fold cross-validation, and its diagnostic efficacy was evaluated based on the area under the receiver operating characteristic (AUC) curve. A total of 45 depression-related proteins were screened based on the top 20 important features output by the CatBoost model in six data sets. Of the nine diagnostic models for depression, the performance of the traditional risk factor model was improved after the addition of proteomic data, with the best model having an average AUC of 0.764 in the test sets. KEGG pathway analysis of 45 screened proteins showed that the most significant pathway involved was the cytokine-cytokine receptor interaction. It is feasible to explore diagnostic biomarkers of depression using data-driven machine learning methods and large-scale data sets, although the results require validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷的煜祺完成签到,获得积分10
刚刚
hfdz发布了新的文献求助30
刚刚
陨落星辰完成签到 ,获得积分10
1秒前
chaohuiwang完成签到,获得积分10
1秒前
致橡树给致橡树的求助进行了留言
2秒前
demoestar完成签到 ,获得积分10
2秒前
Tomin完成签到,获得积分10
2秒前
XXXX完成签到,获得积分10
3秒前
ccc应助刘潞敏采纳,获得10
3秒前
Hydrogen完成签到,获得积分10
3秒前
皮皮完成签到,获得积分20
4秒前
4秒前
吴晨曦发布了新的文献求助10
4秒前
5秒前
海王星完成签到,获得积分10
5秒前
AZN完成签到,获得积分10
5秒前
XHH完成签到 ,获得积分0
5秒前
TT完成签到 ,获得积分10
5秒前
pxptmac完成签到,获得积分10
5秒前
薛定谔的猫应助二狗采纳,获得10
6秒前
6秒前
6秒前
ryan1300完成签到 ,获得积分10
7秒前
9秒前
ordin发布了新的文献求助10
9秒前
xzx7086完成签到,获得积分10
9秒前
9秒前
想把太阳揣兜里完成签到,获得积分10
10秒前
粗心的菀完成签到 ,获得积分0
11秒前
fan完成签到 ,获得积分10
11秒前
George完成签到,获得积分10
12秒前
April完成签到 ,获得积分10
12秒前
可爱的涵菡应助严惜采纳,获得10
12秒前
mmm完成签到 ,获得积分10
12秒前
入暖完成签到,获得积分10
13秒前
jw完成签到,获得积分10
13秒前
小九完成签到,获得积分10
13秒前
明亮的泥猴桃完成签到,获得积分10
14秒前
xzx7086发布了新的文献求助10
14秒前
一只橙子完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890