已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EEG workload estimation and classification: a systematic review

工作量 计算机科学 脑电图 支持向量机 人工智能 机器学习 人口统计学的 稳健性(进化) 分类 数据挖掘 模式识别(心理学) 心理学 人口学 精神科 社会学 基因 操作系统 生物化学 化学
作者
Jahid Hassan,Md Shamim Reza,Syed Ahmed,Nazmul Haque Anik,Md Obaydullah Khan
出处
期刊:Journal of Neural Engineering [IOP Publishing]
被引量:1
标识
DOI:10.1088/1741-2552/ad705e
摘要

Abstract Objective. Electroencephalography (EEG) has evolved into an indispensable instrument for estimating cognitive workload in various domains. ML and DL techniques have been increasingly employed to develop accurate workload estimation and classification models based on EEG data. The goal of this systematic review is to compile the body of research on EEG workload estimation and classification using ML and DL approaches. Methods. The PRISMA procedures were followed in conducting the review, searches were conducted through databases at SpringerLink, ACM Digital Library, IEEE Explore, PUBMED, and Science Direct from the beginning to the end of February 16, 2024. Studies were selected based on predefined inclusion criteria. Data were extracted to capture study design, participant demographics, EEG features, ML/DL algorithms, and reported performance metrics. Results. Out of the 125 items that emerged, 33 scientific papers were fully evaluated. The study designs, participant demographics, and EEG workload measurement and categorization techniques used in the investigations differed. SVM, CNN, and hybrid networks are examples of ML and DL approaches that were often used. Analyzing the accuracy scores achieved by different ML/DL models. Furthermore, a relationship was noted between sample frequency and model accuracy, with higher sample frequencies generally leading to improved performance. The percentage distribution of ML/DL methods revealed that SVMs, CNNs, and RNNs were the most commonly utilized techniques, reflecting their robustness in handling EEG data. Significance. The comprehensive review emphasizes how ML may be used to identify mental workload across a variety of disciplines using EEG data. Optimizing practical applications requires multimodal data integration, standardization efforts, and real-world validation studies. These systems will also be further improved by addressing ethical issues and investigating new EEG properties, which will improve human-computer interaction and performance assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱上阳光的鱼完成签到 ,获得积分10
1秒前
2秒前
3秒前
4秒前
隐形曼青应助liujx采纳,获得10
7秒前
活的在意发布了新的文献求助10
8秒前
落寞臻发布了新的文献求助10
9秒前
11秒前
14秒前
Xiao发布了新的文献求助30
16秒前
Jiayi发布了新的文献求助10
17秒前
lulu666完成签到 ,获得积分10
17秒前
所所应助大男采纳,获得10
21秒前
脑洞疼应助落寞臻采纳,获得10
21秒前
22秒前
26秒前
26秒前
传奇3应助lauchan54采纳,获得10
26秒前
情怀应助丁丁采纳,获得10
27秒前
邹哥发布了新的文献求助10
28秒前
TW完成签到,获得积分10
29秒前
阳光以筠发布了新的文献求助10
29秒前
30秒前
Xiao完成签到,获得积分10
31秒前
小长夜完成签到,获得积分10
31秒前
subtleT完成签到,获得积分10
33秒前
34秒前
健壮问兰发布了新的文献求助10
34秒前
Lis完成签到,获得积分10
35秒前
JamesPei应助Sulin采纳,获得10
36秒前
阳光以筠完成签到,获得积分10
37秒前
41秒前
43秒前
43秒前
万能图书馆应助lulu采纳,获得10
45秒前
Yasong完成签到 ,获得积分10
46秒前
亚里土缺德完成签到,获得积分10
46秒前
活的在意完成签到,获得积分10
48秒前
充电宝应助TW采纳,获得10
51秒前
半圭为璋完成签到,获得积分10
53秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261305
求助须知:如何正确求助?哪些是违规求助? 2902134
关于积分的说明 8318942
捐赠科研通 2571920
什么是DOI,文献DOI怎么找? 1397362
科研通“疑难数据库(出版商)”最低求助积分说明 653708
邀请新用户注册赠送积分活动 632216