HA-Net for Bare Soil Extraction Using Optical Remote Sensing Images

遥感 环境科学 萃取(化学) 材料科学 地质学 色谱法 化学
作者
Junqi Zhao,Dongsheng Du,Lifu Chen,Xiujuan Liang,Haoda Chen,Yuchen Jin
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (16): 3088-3088
标识
DOI:10.3390/rs16163088
摘要

Bare soil will cause soil erosion and contribute to air pollution through the generation of dust, making the timely and effective monitoring of bare soil an urgent requirement for environmental management. Although there have been some researches on bare soil extraction using high-resolution remote sensing images, great challenges still need to be solved, such as complex background interference and small-scale problems. In this regard, the Hybrid Attention Network (HA-Net) is proposed for automatic extraction of bare soil from high-resolution remote sensing images, which includes the encoder and the decoder. In the encoder, HA-Net initially utilizes BoTNet for primary feature extraction, producing four-level features. The extracted highest-level features are then input into the constructed Spatial Information Perception Module (SIPM) and the Channel Information Enhancement Module (CIEM) to emphasize the spatial and channel dimensions of bare soil information adequately. To improve the detection rate of small-scale bare soil areas, during the decoding stage, the Semantic Restructuring-based Upsampling Module (SRUM) is proposed, which utilizes the semantic information from input features and compensate for the loss of detailed information during downsampling in the encoder. An experiment is performed based on high-resolution remote sensing images from the China–Brazil Resources Satellite 04A. The results show that HA-Net obviously outperforms several excellent semantic segmentation networks in bare soil extraction. The average precision and IoU of HA-Net in two scenes can reach 90.9% and 80.9%, respectively, which demonstrates the excellent performance of HA-Net. It embodies the powerful ability of HA-Net for suppressing the interference from complex backgrounds and solving multiscale issues. Furthermore, it may also be used to perform excellent segmentation tasks for other targets from remote sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mof完成签到,获得积分10
1秒前
shuang完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
谦让寄容发布了新的文献求助10
6秒前
科研通AI2S应助Siliconeoil采纳,获得10
6秒前
6秒前
果酱肚肚发布了新的文献求助200
7秒前
斩妖凉完成签到,获得积分10
8秒前
9秒前
JIANHUAN完成签到,获得积分10
9秒前
小郭发布了新的文献求助10
9秒前
热心观众完成签到,获得积分10
11秒前
朱小小发布了新的文献求助10
12秒前
科研通AI2S应助要开心采纳,获得10
14秒前
16秒前
上官若男应助论文侠采纳,获得20
16秒前
joy发布了新的文献求助10
17秒前
谦让寄容完成签到,获得积分10
18秒前
热心观众发布了新的文献求助10
21秒前
23秒前
蛋白工人完成签到,获得积分10
24秒前
anny.white完成签到,获得积分10
24秒前
wyy驳回了monere应助
25秒前
25秒前
橘子完成签到,获得积分10
26秒前
Yippee完成签到 ,获得积分10
26秒前
慕青应助964230130采纳,获得10
29秒前
武器人发布了新的文献求助10
30秒前
今后应助橘子采纳,获得10
31秒前
Orange应助FAY采纳,获得10
31秒前
33秒前
34秒前
Orange应助科研通管家采纳,获得10
35秒前
淡然元彤应助科研通管家采纳,获得10
35秒前
华仔应助科研通管家采纳,获得10
35秒前
不配.应助科研通管家采纳,获得20
35秒前
35秒前
彭于彦祖应助科研通管家采纳,获得30
36秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242524
求助须知:如何正确求助?哪些是违规求助? 2886899
关于积分的说明 8245111
捐赠科研通 2555398
什么是DOI,文献DOI怎么找? 1383482
科研通“疑难数据库(出版商)”最低求助积分说明 649722
邀请新用户注册赠送积分活动 625586