Remaining Useful Life Prediction Based on Time-Series Features and Conformalized Quantile Regression

系列(地层学) 分位数回归 分位数 时间序列 计算机科学 统计 回归 计量经济学 数学 地质学 古生物学
作者
Song Mao,Xiaofeng Li,Bo Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad762c
摘要

Abstract The remaining useful life (RUL) prediction is a key task in the field of prognostics and health management (PHM) and plays a crucial role in preventive maintenance tasks. Traditional prediction methods have mostly focused on point prediction issues, neglecting the uncertain factors in the prediction task, thus failing to ensure the credibility of the prediction. In light of this, this paper focuses on improving the accuracy of point prediction models for RUL and interval prediction issues, proposing the introduction of multi-scale convolutional neural networks (MCNN), decomposed time-sequential linear layers (DL), and conformal quantile regression (CQR) techniques into the RUL prediction task of aero-engines. The aim is to provide timely and accurate failure warnings for aero engines, effectively ensure their reliability and safety, and reduce maintenance costs throughout their life cycle. In response to the limitations of current point prediction models in capturing the temporal features of life data, a MCNN-DL-based RUL prediction model is proposed to capture life data's long-term trends and local variations for precise point predictions. Furthermore, an interval estimation approach for RUL is presented, which integrates the MCNN-DL model with CQR to account for prediction uncertainty. Finally, the method in this paper is verified using the CMAPSS dataset, and the results show that the method has achieved excellent results in both RUL point prediction and interval prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhu_dawn完成签到,获得积分10
1秒前
joan完成签到 ,获得积分10
3秒前
工科小白求学路完成签到,获得积分20
3秒前
八爪完成签到,获得积分10
3秒前
xiaowei发布了新的文献求助10
4秒前
研友_VZG7GZ应助宋天宇采纳,获得10
5秒前
Owen应助li采纳,获得10
5秒前
6秒前
6秒前
诚心代芙完成签到 ,获得积分10
8秒前
9秒前
LOWRY完成签到,获得积分10
9秒前
聪慧雪糕发布了新的文献求助10
11秒前
领导范儿应助酷酷的紫南采纳,获得30
11秒前
田様应助危机的碧菡采纳,获得10
11秒前
jjjjjj完成签到,获得积分10
11秒前
张文正完成签到,获得积分10
11秒前
tiantiantian完成签到,获得积分10
12秒前
sun发布了新的文献求助10
12秒前
13秒前
脑洞疼应助fei采纳,获得10
13秒前
13秒前
13秒前
sivan完成签到,获得积分10
14秒前
HY完成签到,获得积分10
14秒前
sen123发布了新的文献求助10
15秒前
小杨小杨完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
18秒前
18秒前
炎帝发布了新的文献求助10
18秒前
18秒前
nn完成签到,获得积分10
19秒前
don1990发布了新的文献求助30
19秒前
彭于晏应助天气预报采纳,获得10
20秒前
jjjjjj发布了新的文献求助10
21秒前
21秒前
12完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360485
求助须知:如何正确求助?哪些是违规求助? 4491088
关于积分的说明 13981391
捐赠科研通 4393724
什么是DOI,文献DOI怎么找? 2413597
邀请新用户注册赠送积分活动 1406430
关于科研通互助平台的介绍 1380915