已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remaining Useful Life Prediction Based on Time-Series Features and Conformalized Quantile Regression

系列(地层学) 分位数回归 分位数 时间序列 计算机科学 统计 回归 计量经济学 数学 地质学 古生物学
作者
Song Mao,Xiaofeng Li,Bo Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad762c
摘要

Abstract The remaining useful life (RUL) prediction is a key task in the field of prognostics and health management (PHM) and plays a crucial role in preventive maintenance tasks. Traditional prediction methods have mostly focused on point prediction issues, neglecting the uncertain factors in the prediction task, thus failing to ensure the credibility of the prediction. In light of this, this paper focuses on improving the accuracy of point prediction models for RUL and interval prediction issues, proposing the introduction of multi-scale convolutional neural networks (MCNN), decomposed time-sequential linear layers (DL), and conformal quantile regression (CQR) techniques into the RUL prediction task of aero-engines. The aim is to provide timely and accurate failure warnings for aero engines, effectively ensure their reliability and safety, and reduce maintenance costs throughout their life cycle. In response to the limitations of current point prediction models in capturing the temporal features of life data, a MCNN-DL-based RUL prediction model is proposed to capture life data's long-term trends and local variations for precise point predictions. Furthermore, an interval estimation approach for RUL is presented, which integrates the MCNN-DL model with CQR to account for prediction uncertainty. Finally, the method in this paper is verified using the CMAPSS dataset, and the results show that the method has achieved excellent results in both RUL point prediction and interval prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助来日方甜采纳,获得10
4秒前
9秒前
暴躁的元灵完成签到 ,获得积分10
9秒前
LiuRuizhe完成签到,获得积分10
9秒前
超神完成签到,获得积分10
12秒前
14秒前
豆豆发布了新的文献求助10
14秒前
15秒前
hao发布了新的文献求助10
19秒前
来日方甜发布了新的文献求助10
19秒前
pulga发布了新的文献求助20
20秒前
20秒前
Akim应助茜zi采纳,获得30
25秒前
28秒前
聪明的青雪完成签到,获得积分10
31秒前
32秒前
33秒前
37秒前
林利芳完成签到 ,获得积分10
38秒前
pcr发布了新的文献求助10
40秒前
嗯哼举报许七安求助涉嫌违规
42秒前
柚子完成签到 ,获得积分10
43秒前
渐渐我闻歌都不想起舞完成签到,获得积分10
44秒前
小土豆完成签到 ,获得积分10
46秒前
46秒前
张杰列夫完成签到 ,获得积分10
50秒前
郑大完成签到,获得积分10
55秒前
56秒前
槲寄生完成签到,获得积分10
56秒前
杳鸢应助科研通管家采纳,获得10
59秒前
英姑应助科研通管家采纳,获得10
59秒前
杳鸢应助科研通管家采纳,获得10
59秒前
嗯哼应助科研通管家采纳,获得20
59秒前
杳鸢应助科研通管家采纳,获得10
59秒前
华仔应助科研通管家采纳,获得30
59秒前
59秒前
jyy应助科研通管家采纳,获得10
59秒前
嗯哼应助科研通管家采纳,获得20
59秒前
杳鸢应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880839
关于积分的说明 8217229
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377749
科研通“疑难数据库(出版商)”最低求助积分说明 647959
邀请新用户注册赠送积分活动 623314