Remaining Useful Life Prediction Based on Time-Series Features and Conformalized Quantile Regression

系列(地层学) 分位数回归 分位数 时间序列 计算机科学 统计 回归 计量经济学 数学 地质学 古生物学
作者
Song Mao,Xiaofeng Li,Bo Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad762c
摘要

Abstract The remaining useful life (RUL) prediction is a key task in the field of prognostics and health management (PHM) and plays a crucial role in preventive maintenance tasks. Traditional prediction methods have mostly focused on point prediction issues, neglecting the uncertain factors in the prediction task, thus failing to ensure the credibility of the prediction. In light of this, this paper focuses on improving the accuracy of point prediction models for RUL and interval prediction issues, proposing the introduction of multi-scale convolutional neural networks (MCNN), decomposed time-sequential linear layers (DL), and conformal quantile regression (CQR) techniques into the RUL prediction task of aero-engines. The aim is to provide timely and accurate failure warnings for aero engines, effectively ensure their reliability and safety, and reduce maintenance costs throughout their life cycle. In response to the limitations of current point prediction models in capturing the temporal features of life data, a MCNN-DL-based RUL prediction model is proposed to capture life data's long-term trends and local variations for precise point predictions. Furthermore, an interval estimation approach for RUL is presented, which integrates the MCNN-DL model with CQR to account for prediction uncertainty. Finally, the method in this paper is verified using the CMAPSS dataset, and the results show that the method has achieved excellent results in both RUL point prediction and interval prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果鸭子发布了新的文献求助10
刚刚
在水一方应助开心超人采纳,获得10
刚刚
两个我发布了新的文献求助10
1秒前
12345完成签到,获得积分10
1秒前
CC完成签到,获得积分10
1秒前
乌江上次完成签到,获得积分10
2秒前
所所应助木直采纳,获得30
5秒前
陈宇发布了新的文献求助10
5秒前
bluueboom完成签到,获得积分20
6秒前
追寻冰淇淋给yang123的求助进行了留言
6秒前
7秒前
顾矜应助西灵壹采纳,获得10
8秒前
田様应助恬恬采纳,获得10
8秒前
山茶完成签到,获得积分20
10秒前
10秒前
隐形曼青应助猪猪hero采纳,获得10
10秒前
wangliang0329完成签到,获得积分10
10秒前
呐呐呐完成签到 ,获得积分10
11秒前
11秒前
11秒前
852应助龙韵采纳,获得10
11秒前
情怀应助CRUISE采纳,获得10
12秒前
dingding发布了新的文献求助30
14秒前
WJ发布了新的文献求助10
14秒前
14秒前
14秒前
刘爽应助Xe采纳,获得10
15秒前
xyx发布了新的文献求助20
15秒前
16秒前
核桃应助jie采纳,获得10
16秒前
16秒前
16秒前
Fine完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
XudongHou发布了新的文献求助10
17秒前
17秒前
777777777完成签到,获得积分10
19秒前
杜不腾完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771