Remaining Useful Life Prediction Based on Time-Series Features and Conformalized Quantile Regression

系列(地层学) 分位数回归 分位数 时间序列 计算机科学 统计 回归 计量经济学 数学 地质学 古生物学
作者
Song Mao,Xiaofeng Li,Bo Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad762c
摘要

Abstract The remaining useful life (RUL) prediction is a key task in the field of prognostics and health management (PHM) and plays a crucial role in preventive maintenance tasks. Traditional prediction methods have mostly focused on point prediction issues, neglecting the uncertain factors in the prediction task, thus failing to ensure the credibility of the prediction. In light of this, this paper focuses on improving the accuracy of point prediction models for RUL and interval prediction issues, proposing the introduction of multi-scale convolutional neural networks (MCNN), decomposed time-sequential linear layers (DL), and conformal quantile regression (CQR) techniques into the RUL prediction task of aero-engines. The aim is to provide timely and accurate failure warnings for aero engines, effectively ensure their reliability and safety, and reduce maintenance costs throughout their life cycle. In response to the limitations of current point prediction models in capturing the temporal features of life data, a MCNN-DL-based RUL prediction model is proposed to capture life data's long-term trends and local variations for precise point predictions. Furthermore, an interval estimation approach for RUL is presented, which integrates the MCNN-DL model with CQR to account for prediction uncertainty. Finally, the method in this paper is verified using the CMAPSS dataset, and the results show that the method has achieved excellent results in both RUL point prediction and interval prediction tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jaslin完成签到,获得积分10
1秒前
1秒前
CodeCraft应助俭朴灵竹采纳,获得30
2秒前
fanicky完成签到,获得积分10
2秒前
ZAY发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
少年愁发布了新的文献求助10
3秒前
3秒前
guozizi发布了新的文献求助30
3秒前
科目三应助困困采纳,获得10
3秒前
科研小白完成签到,获得积分10
3秒前
烟花应助Luhh采纳,获得10
3秒前
4秒前
Maxstein完成签到,获得积分10
4秒前
NexusExplorer应助leesen采纳,获得10
4秒前
5秒前
qianchen完成签到,获得积分10
5秒前
5秒前
寇博翔发布了新的文献求助10
5秒前
5秒前
6秒前
MySun完成签到,获得积分10
6秒前
Bethan完成签到,获得积分10
6秒前
6秒前
英姑应助sttail采纳,获得10
7秒前
健忘的芷荷完成签到,获得积分10
7秒前
机灵安白完成签到,获得积分10
8秒前
慕青应助啵啵虎采纳,获得10
8秒前
8秒前
昏睡的祥完成签到 ,获得积分10
8秒前
8秒前
ronalbo完成签到,获得积分20
8秒前
shengse发布了新的文献求助20
8秒前
Nyuki完成签到,获得积分10
9秒前
9秒前
泡泡糖完成签到 ,获得积分10
9秒前
9秒前
BK2008完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997