神经科学
突触可塑性
长时程增强
兴奋性突触后电位
突触
清醒
前额叶皮质
树突棘
生物
突触疲劳
睡眠(系统调用)
脑电图
抑制性突触后电位
计算机科学
受体
认知
操作系统
生物化学
海马结构
作者
Takeshi Sawada,Yusuke Iino,Kensuke Yoshida,Hitoshi Okazaki,Shinnosuke Nomura,Chika Shimizu,Tomoki Arima,Motoki Juichi,Siqi Zhou,Nobuhiro Kurabayashi,Takeshi Sakurai,Sho Yagishita,Masashi Yanagisawa,Taro Toyoizumi,Haruo Kasai,Shoi Shi
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2024-09-26
卷期号:385 (6716): 1459-1465
被引量:1
标识
DOI:10.1126/science.adl3043
摘要
Sleep is regulated by homeostatic processes, yet the biological basis of sleep pressure that accumulates during wakefulness, triggers sleep, and dissipates during sleep remains elusive. We explored a causal relationship between cellular synaptic strength and electroencephalography delta power indicating macro-level sleep pressure by developing a theoretical framework and a molecular tool to manipulate synaptic strength. The mathematical model predicted that increased synaptic strength promotes the neuronal “down state” and raises the delta power. Our molecular tool (synapse-targeted chemically induced translocation of Kalirin-7, SYNCit-K), which induces dendritic spine enlargement and synaptic potentiation through chemically induced translocation of protein Kalirin-7, demonstrated that synaptic potentiation of excitatory neurons in the prefrontal cortex (PFC) increases nonrapid eye movement sleep amounts and delta power. Thus, synaptic strength of PFC excitatory neurons dictates sleep pressure in mammals.
科研通智能强力驱动
Strongly Powered by AbleSci AI