A framework for using event evolutionary graphs to rapidly assess the vulnerability of urban flood cascade compound disaster event networks

大洪水 脆弱性(计算) 事件(粒子物理) 自然灾害 计算机科学 脆弱性评估 应急管理 社会脆弱性 构造(python库) 特大城市 环境资源管理 地理 计算机安全 环境科学 生态学 气象学 心理学 物理 考古 量子力学 心理弹性 心理治疗师 政治学 法学 生物 程序设计语言
作者
Yilin Chen,Lidan Zhang,Xiaohong Chen
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:642: 131783-131783 被引量:2
标识
DOI:10.1016/j.jhydrol.2024.131783
摘要

Increasingly frequent flood disasters have caused great losses in recent years. Urban floods induce not only natural geological disasters but also social accidents. These disaster events, called urban flood cascade compound disaster events (UFCCDEs) in this study, have significant cascade, superposition, and amplification effects. However, conventional data sources and processing methods make it difficult to analyze the detailed course of disaster events caused by urban floods, thereby hindering the vulnerability assessment of UFCCDE networks (UFCCDENs). Herein, we propose a framework considering the interactions between disaster events caused by urban floods for rapidly and comprehensively assessing the vulnerability of the UFCCDEN. First, social media data (Sina Weibo) are processed to analyze the spatio-temporal distribution of UFCCDEs and construct a UFCCDEN based on an event evolutionary graph. Second, complex network theory is applied to evaluate the importance of disaster events and the vulnerability of disaster causal chains in the constructed UFCCDEN. Finally, the global efficiency of the network is calculated to assess the propagation efficiency of the UFCCDEN before and after implementing disaster mitigation strategies based on the assessment results to demonstrate the performance of the assessment framework. The coastal megacity Guangzhou was selected as an example. The results showed that, social media data can provide detailed and valid information about UFCCDEs, which can be used to construct the UFCCDEN based on the event evolutionary graph. Waterlogging is found to be the most important disaster event in the UFCCDEN. Furthermore, power facilities, drainage facilities, and roads should be given top priority in the prevention and mitigation of urban floods because of their significant cascading amplification effects. The proposed framework can make the propagation efficiency of the UFCCDEN markedly decrease by 37–62% and 44%, based on the assessment results of disaster events and causal chains, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实乌冬面完成签到 ,获得积分10
1秒前
Yi完成签到,获得积分10
1秒前
郭郭要努力ya完成签到 ,获得积分10
3秒前
3秒前
奋斗的若云完成签到,获得积分10
4秒前
5秒前
mingzhi完成签到,获得积分10
6秒前
6秒前
CodeCraft应助开朗的寄灵采纳,获得10
8秒前
jijijibibibi完成签到,获得积分10
9秒前
Mr.PY发布了新的文献求助20
10秒前
10秒前
11秒前
bobecust发布了新的文献求助10
12秒前
南楼小阁主完成签到,获得积分10
12秒前
13秒前
TT工作好认真完成签到 ,获得积分10
14秒前
听山雁完成签到 ,获得积分10
14秒前
人文发布了新的文献求助10
15秒前
zhou默完成签到,获得积分10
15秒前
颜靖仇发布了新的文献求助10
15秒前
lixiang发布了新的文献求助10
16秒前
忧虑的代容完成签到,获得积分10
16秒前
17秒前
慈ci发布了新的文献求助10
17秒前
无花果应助万默采纳,获得10
18秒前
slm完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
ding应助湖以采纳,获得10
19秒前
陈哇塞完成签到,获得积分20
20秒前
传奇3应助liuy03采纳,获得10
21秒前
lixiang完成签到,获得积分10
21秒前
gg发布了新的文献求助10
23秒前
23秒前
大模型应助慈ci采纳,获得10
26秒前
28秒前
28秒前
666完成签到,获得积分20
28秒前
传奇3应助HUO采纳,获得10
28秒前
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499