Ultrasound-Based 3-D Gesture Recognition: Signal Optimization, Trajectory, and Feature Classification

手势识别 人工智能 计算机科学 计算机视觉 手势 隐马尔可夫模型 特征(语言学) 超声波传感器 支持向量机 特征向量 弹道 模式识别(心理学) 语音识别 声学 语言学 天文 物理 哲学
作者
Yongzhi Liu,Yifei Fan,Zhangliang Wu,Jianfei Yao,Zhili Long
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:7
标识
DOI:10.1109/tim.2023.3235438
摘要

Gesture recognition is an emerging technology of human–computer interaction. Compared to the conventional technologies such as wearable devices, cameras, and radars, ultrasound-based gesture recognition has the advantages of low cost, low power consumption, and appropriates to fog or dark environment. In this study, we propose a gesture trajectory recognition device via ultrasonic signal, which is successfully applied in recognition and classification for gestures in 3-D space. First, the sensing hardware and software configurations for transmitting and receiving ultrasonic signals are designed, which can accurately obtain ultrasonic echo. Effects of different structures on the ultrasound scattering are explored. An adaptive filter based on wavelet packet decomposition is utilized to remove the noise in the ultrasonic echo. Second, the vibration principle of the ultrasonic sensor is modeled, and the rising envelope of ultrasound is fit by the quadratic curve to accurately extract the time of flight (TOF). Then, the error analysis and compensation are performed. An active 3-D positioning model is constructed and the positioning and tracking algorithm of gesture motion is theoretically established. A binomial fitting algorithm-based sliding template is proposed. To process the abnormal value and locate the start position of the gesture, the data association criterion and the maximum displacement threshold are introduced. Projection, dimensionality reduction, and reconstruction are performed on the trajectory. Then, the distance feature and the direction feature are extracted, and the hidden Markov model (HMM) is applied to realize the classification and recognition of gesture trajectory. The experiment shows that the 3-D gesture recognition system based on ultrasound can recognize a total of 36 character gestures from 0 to 9 and A to Z, with a recognition rate of 90.53%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunmmon完成签到,获得积分10
刚刚
刚刚
1秒前
善学以致用应助黑冰A采纳,获得10
4秒前
balko完成签到,获得积分10
5秒前
肉肉完成签到,获得积分20
6秒前
阳光青文发布了新的文献求助10
7秒前
7秒前
yx_cheng应助灯与鬼采纳,获得10
8秒前
FashionBoy应助hoshi采纳,获得10
10秒前
longer完成签到 ,获得积分10
10秒前
积极的夜香完成签到,获得积分10
11秒前
12秒前
玩命的鱼发布了新的文献求助10
13秒前
14秒前
15秒前
勤恳立轩完成签到 ,获得积分10
15秒前
Akim应助NoMigraine采纳,获得10
16秒前
刘先生发布了新的文献求助10
17秒前
17秒前
gengxw发布了新的文献求助30
17秒前
灰灰喵完成签到 ,获得积分10
18秒前
18秒前
19秒前
deer完成签到,获得积分10
19秒前
华清引完成签到,获得积分10
19秒前
小白发布了新的文献求助10
20秒前
执玉完成签到,获得积分20
20秒前
从容小蘑菇完成签到,获得积分10
21秒前
小星星发布了新的文献求助50
22秒前
zhai发布了新的文献求助10
23秒前
magiczhu完成签到,获得积分10
24秒前
25秒前
常琳琳完成签到,获得积分10
25秒前
siqi发布了新的文献求助10
26秒前
28秒前
CodeCraft应助qdd采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
28秒前
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967367
求助须知:如何正确求助?哪些是违规求助? 3512602
关于积分的说明 11164375
捐赠科研通 3247533
什么是DOI,文献DOI怎么找? 1793886
邀请新用户注册赠送积分活动 874741
科研通“疑难数据库(出版商)”最低求助积分说明 804498