Ultrasound-Based 3-D Gesture Recognition: Signal Optimization, Trajectory, and Feature Classification

手势识别 人工智能 计算机科学 计算机视觉 手势 隐马尔可夫模型 特征(语言学) 超声波传感器 支持向量机 特征向量 弹道 模式识别(心理学) 语音识别 声学 语言学 天文 物理 哲学
作者
Yongzhi Liu,Yifei Fan,Zhangliang Wu,Jianfei Yao,Zhili Long
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:7
标识
DOI:10.1109/tim.2023.3235438
摘要

Gesture recognition is an emerging technology of human–computer interaction. Compared to the conventional technologies such as wearable devices, cameras, and radars, ultrasound-based gesture recognition has the advantages of low cost, low power consumption, and appropriates to fog or dark environment. In this study, we propose a gesture trajectory recognition device via ultrasonic signal, which is successfully applied in recognition and classification for gestures in 3-D space. First, the sensing hardware and software configurations for transmitting and receiving ultrasonic signals are designed, which can accurately obtain ultrasonic echo. Effects of different structures on the ultrasound scattering are explored. An adaptive filter based on wavelet packet decomposition is utilized to remove the noise in the ultrasonic echo. Second, the vibration principle of the ultrasonic sensor is modeled, and the rising envelope of ultrasound is fit by the quadratic curve to accurately extract the time of flight (TOF). Then, the error analysis and compensation are performed. An active 3-D positioning model is constructed and the positioning and tracking algorithm of gesture motion is theoretically established. A binomial fitting algorithm-based sliding template is proposed. To process the abnormal value and locate the start position of the gesture, the data association criterion and the maximum displacement threshold are introduced. Projection, dimensionality reduction, and reconstruction are performed on the trajectory. Then, the distance feature and the direction feature are extracted, and the hidden Markov model (HMM) is applied to realize the classification and recognition of gesture trajectory. The experiment shows that the 3-D gesture recognition system based on ultrasound can recognize a total of 36 character gestures from 0 to 9 and A to Z, with a recognition rate of 90.53%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜玲完成签到,获得积分10
刚刚
刚刚
科目三应助感人的心采纳,获得10
1秒前
研友_852G6L完成签到,获得积分10
1秒前
2秒前
2秒前
年轻葶发布了新的文献求助10
2秒前
3秒前
汪汪队立大功完成签到,获得积分10
4秒前
花城完成签到,获得积分20
4秒前
renlangfen发布了新的文献求助10
5秒前
杨咩咩完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
沉淀完成签到,获得积分10
5秒前
5秒前
Shirley应助小张爱学习采纳,获得10
6秒前
小于发布了新的文献求助10
6秒前
Docgyj完成签到 ,获得积分10
6秒前
6秒前
大锤哥完成签到,获得积分10
6秒前
领导范儿应助伶俐从筠采纳,获得10
7秒前
Owen应助他吞吞吐吐采纳,获得10
7秒前
7秒前
7秒前
夏青荷发布了新的文献求助10
7秒前
8秒前
sarah完成签到,获得积分10
8秒前
有使不完牛劲的正主完成签到,获得积分10
8秒前
!!发布了新的文献求助10
8秒前
9秒前
Lucas完成签到,获得积分10
9秒前
9秒前
mym完成签到 ,获得积分20
10秒前
cc发布了新的文献求助10
10秒前
鹅蛋黄发布了新的文献求助10
11秒前
感人的心完成签到,获得积分20
11秒前
ss发布了新的文献求助10
11秒前
浅是宝贝完成签到 ,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587