Yi-Shen-Hua-Shi granule ameliorates diabetic kidney disease by the “gut-kidney axis”

内分泌学 内科学 糖尿病 颗粒(地质) 医学 生物 化学 古生物学
作者
Cong Han,Zhen Shen,Tao Cui,Shan-shan Ai,Ranran Gao,Yao Liu,Gui-yuan Sui,Hongzhen Hu,Wei Li
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:307: 116257-116257 被引量:10
标识
DOI:10.1016/j.jep.2023.116257
摘要

Yi-Shen-Hua-Shi (YSHS) granule is an effective prescription widely used in traditional Chinese medicine to treat diabetic kidney disease (DKD), its exact efficacy in treating DKD has been confirmed but the underlying regulatory mechanism has not been fully elucidated.To explore the mechanism by which YSHS granule regulates intestinal flora and serum metabolites and then regulates renal mRNA expression through the "gut-kidney axis", so as to improve DKD.40 rats were divided into five groups: Normal group (N) (normal saline), model group (M) (STZ + normal saline), YSHS granule low-dose group (YL) (STZ + 2.27 g kg-1 d-1), YSHS granule high-dose group (YH) (STZ + 5.54g kg-1 d-1) and valsartan group (V) (STZ + 7.38mg kg-1 d-1). After 6 weeks, changes in blood glucose, blood lipids, and renal function related indexes were observed, as well as pathological changes in the kidney and colon. Intestinal microbiota was sequenced by 16S rDNA, serum differential metabolites were identified by LC-MS/MS, and renal differences in mRNA expression were observed by RNA-seq. Further, through the association analysis of intestinal differential microbiota, serum differential metabolites and kidney differential mRNAs, the target flora, target metabolites and target genes of YSHS granule were screened and verified, and the "gut-metabolism-transcription" co-expression network was constructed.In group M, blood glucose, blood lipid and proteinuria were increased, inflammation, oxidative stress and renal function were aggravated, with the proliferation of mesangial matrix, vacuolar degeneration of renal tubules, accumulation of collagen and lipid, and increased intestinal permeability, and YSHS granule and valsartan improved these disorders to varying degrees. High dose of YSHS granule improved the diversity and abundance of flora, decreased the F/B value, greatly increased the abundance of Lactobacillus and Lactobacillus_murinus, and decreased the abundance of Prevoella UCG_001. 14 target metabolites of YSHS granule were identified, which were mainly enriched in 20 KEGG pathways, such as Glycerophospholipid metabolism, Sphingolipid metabolism and Phenylalanine, tyrosine and tryptophan biosynthesis. 96 target mRNAs of YSHS granule were also identified. The enriched top 20 pathways were closely related to glucose and lipid metabolism, of which a total of 21 differential mRNAs were expressed. Further correlation analysis revealed that Lactobacillus, Lactobacillus_murinus and Prevotella UCG_001 were highly correlated with Glycerophospholipid metabolism, Sphingolipid metabolism and Phenylalanine, tyrosine and tryptophan biosynthesis pathways. At the same time, 6 pathways including Glycerophospholipid metabolism, Arachidonic acid metabolism, Purine metabolism, Primary bile acid biosynthesis, Ascorbate and aldarate metabolism and Galactose metabolism were co-enriched by the target metabolites and the target mRNAs of YSHS granule, including 7 differential metabolites such as phosphatidylethanolamine and 7 differential genes such as Adcy3. The 7 differential metabolites had high predictive value of AUC, and the validation of 7 differential genes were highly consistent with the sequencing results.YSHS granule could improve DKD through the "gut-kidney axis". Lactobacillus and Lactobacillus_murinus were the main driving forces. 6 pathways related to glucose and lipid metabolism, especially Glycerophospholipid metabolism, may be an important follow-up response and regulatory mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hh完成签到,获得积分10
1秒前
2秒前
SF2768发布了新的文献求助10
2秒前
2秒前
小土豆儿发布了新的文献求助10
3秒前
3秒前
3秒前
脑洞疼应助123采纳,获得10
4秒前
科研通AI2S应助shawn采纳,获得10
4秒前
yk完成签到 ,获得积分10
4秒前
5秒前
涂涂完成签到,获得积分20
5秒前
Han完成签到,获得积分20
5秒前
6秒前
zhfliang完成签到,获得积分10
6秒前
荼柒完成签到,获得积分10
6秒前
二黑发布了新的文献求助10
6秒前
gfreezer完成签到,获得积分10
7秒前
LL完成签到,获得积分10
8秒前
xy发布了新的文献求助10
8秒前
8秒前
8秒前
外向语山发布了新的文献求助10
9秒前
9秒前
YMH完成签到 ,获得积分10
9秒前
甜美尔风发布了新的文献求助20
10秒前
大个应助li采纳,获得10
10秒前
大胆水杯完成签到,获得积分10
10秒前
10秒前
LL发布了新的文献求助10
11秒前
shen_ting发布了新的文献求助10
11秒前
尊敬湘发布了新的文献求助10
11秒前
12秒前
小土豆儿完成签到,获得积分10
13秒前
在水一方发布了新的文献求助10
13秒前
14秒前
大孙完成签到,获得积分10
14秒前
鳗鱼超短裙完成签到,获得积分10
15秒前
Jasper应助慧敏采纳,获得10
15秒前
妖怪大大完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663