Estimating stomatal conductance of citrus under water stress based on multispectral imagery and machine learning methods

多光谱图像 色调 蒸腾作用 天蓬 气孔导度 人工智能 数学 分割 环境科学 计算机科学 模式识别(心理学) 遥感 光合作用 植物 地质学 生物
作者
Jiaxing Xie,Yufeng Chen,Zhenbang Yu,Jiaxin Wang,Gaotian Liang,Peng Gao,Daozong Sun,Weixing Wang,Zuna Shu,Dongxiao Yin,Jun Li
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:14 被引量:9
标识
DOI:10.3389/fpls.2023.1054587
摘要

Introduction Canopy stomatal conductance (Sc) indicates the strength of photosynthesis and transpiration of plants. In addition, Sc is a physiological indicator that is widely employed to detect crop water stress. Unfortunately, existing methods for measuring canopy Sc are time-consuming, laborious, and poorly representative. Methods To solve these problems, in this study, we combined multispectral vegetation index (VI) and texture features to predict the Sc values and used citrus trees in the fruit growth period as the research object. To achieve this, VI and texture feature data of the experimental area were obtained using a multispectral camera. The H (Hue), S (Saturation) and V (Value) segmentation algorithm and the determined threshold of VI were used to obtain the canopy area images, and the accuracy of the extraction results was evaluated. Subsequently, the gray level co-occurrence matrix (GLCM) was used to calculate the eight texture features of the image, and then the full subset filter was used to obtain the sensitive image texture features and VI. Support vector regression, random forest regression, and k-nearest neighbor regression (KNR) Sc prediction models were constructed, which were based on single and combined variables. Results The analysis revealed the following: 1) the accuracy of the HSV segmentation algorithm was the highest, achieving more than 80%. The accuracy of the VI threshold algorithm using excess green was approximately 80%, which achieved accurate segmentation. 2) The citrus tree photosynthetic parameters were all affected by different water supply treatments. The greater the degree of water stress, the lower the net photosynthetic rate (Pn), transpiration rate (Tr), and Sc of the leaves. 3) In the three Sc prediction models, The KNR model, which was constructed by combining image texture features and VI had the optimum prediction effect (training set: R 2 = 0.91076, RMSE = 0.00070; validation set; R 2 = 0.77937, RMSE = 0.00165). Compared with the KNR model, which was only based on VI or image texture features, the R 2 of the validation set of the KNR model based on combined variables was improved respectively by 6.97% and 28.42%. Discussion This study provides a reference for large-scale remote sensing monitoring of citrus Sc by multispectral technology. Moreover, it can be used to monitor the dynamic changes of Sc and provide a new technique for gaining a better understanding of the growth status and water stress of citrus crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖胖发布了新的文献求助10
1秒前
wei完成签到,获得积分10
1秒前
蛮蛮完成签到 ,获得积分10
1秒前
1秒前
2秒前
淡淡芯完成签到 ,获得积分10
2秒前
调皮蛋发布了新的文献求助10
3秒前
5秒前
5秒前
Owen应助是媛媛采纳,获得10
5秒前
聪明白秋完成签到,获得积分10
6秒前
ZHI发布了新的文献求助10
6秒前
吉&蘭应助宋文文采纳,获得10
7秒前
8秒前
开兴发布了新的文献求助10
8秒前
蛮蛮发布了新的文献求助10
11秒前
算我运气好完成签到,获得积分0
11秒前
11秒前
姣姣完成签到,获得积分20
12秒前
12秒前
叭叭发布了新的文献求助10
13秒前
13秒前
大力便当发布了新的文献求助10
13秒前
13秒前
烟花应助ZHI采纳,获得10
13秒前
cc发布了新的文献求助10
14秒前
TonyLee完成签到,获得积分10
15秒前
16秒前
坚定背包发布了新的文献求助10
17秒前
17秒前
香蕉觅云应助姣姣采纳,获得10
17秒前
qinghe发布了新的文献求助10
17秒前
深情安青应助多情蓝采纳,获得30
17秒前
CipherSage应助巫郁采纳,获得10
17秒前
XHS发布了新的文献求助10
18秒前
19秒前
e746700020完成签到,获得积分10
20秒前
文昊发布了新的文献求助50
21秒前
淡定初珍发布了新的文献求助10
21秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752547
求助须知:如何正确求助?哪些是违规求助? 3296091
关于积分的说明 10092821
捐赠科研通 3010979
什么是DOI,文献DOI怎么找? 1653508
邀请新用户注册赠送积分活动 788267
科研通“疑难数据库(出版商)”最低求助积分说明 752789