曲折
脚手架
松质骨
磁导率
材料科学
多孔性
生物医学工程
小旋翼机
组织工程
复合材料
化学
解剖
工程类
生物
生物化学
膜
聚合物
共聚物
作者
Akbar Teguh Prakoso,Hasan Basri,Dendy Adanta,Irsyadi Yani,Muhammad Imam Ammarullah,Imam Akbar,Farah Amira Mohd Ghazali,Ardiyansyah Syahrom,Tunku Kamarul
出处
期刊:Biomedicines
[MDPI AG]
日期:2023-02-01
卷期号:11 (2): 427-427
被引量:75
标识
DOI:10.3390/biomedicines11020427
摘要
In designing porous scaffolds, permeability is essential to consider as a function of cell migration and bone tissue regeneration. Good permeability has been achieved by mimicking the complexity of natural cancellous bone. In this study, a porous scaffold was developed according to the morphological indices of cancellous bone (porosity, specific surface area, thickness, and tortuosity). The computational fluid dynamics method analyzes the fluid flow through the scaffold. The permeability values of natural cancellous bone and three types of scaffolds (cubic, octahedron pillar, and Schoen's gyroid) were compared. The results showed that the permeability of the Negative Schwarz Primitive (NSP) scaffold model was similar to that of natural cancellous bone, which was in the range of 2.0 × 10-11 m2 to 4.0 × 10-10 m2. In addition, it was observed that the tortuosity parameter significantly affected the scaffold's permeability and shear stress values. The tortuosity value of the NSP scaffold was in the range of 1.5-2.8. Therefore, tortuosity can be manipulated by changing the curvature of the surface scaffold radius to obtain a superior bone tissue engineering construction supporting cell migration and tissue regeneration. This parameter should be considered when making new scaffolds, such as our NSP. Such efforts will produce a scaffold architecturally and functionally close to the natural cancellous bone, as demonstrated in this study.
科研通智能强力驱动
Strongly Powered by AbleSci AI