Anti-Screenshot Watermarking Algorithm for Archival Image Based on Deep Learning Model

数字水印 算法 人工智能 图像(数学) 计算机科学 模式识别(心理学) 数学
作者
Gu Wei,Ching‐Chun Chang,Yu Bai,Yunyuan Fan,Liang Tao,Li Li
出处
期刊:Entropy [MDPI AG]
卷期号:25 (2): 288-288 被引量:7
标识
DOI:10.3390/e25020288
摘要

Over recent years, there are an increasing number of incidents in which archival images have been ripped. Leak tracking is one of the key problems for anti-screenshot digital watermarking of archival images. Most of the existing algorithms suffer from low detection rate of watermark, because the archival images have a single texture. In this paper, we propose an anti-screenshot watermarking algorithm for archival images based on Deep Learning Model (DLM). At present, screenshot image watermarking algorithms based on DLM can resist screenshot attacks. However, if these algorithms are applied on archival images, the bit error rate (BER) of the image watermark will increase dramatically. Archival images are ubiquitous, so in order to improve the robustness of archival image anti-screenshot, we propose a screenshot DLM "ScreenNet". It aims to enhance the background and enrich the texture with style transfer. Firstly, a preprocessing process based on style transfer is added before the insertion of an archival image into the encoder to reduce the influence of the screenshot process of the cover image. Secondly, the ripped images are usually moiréd, so we generate a database of ripped archival images with moiréd by means of moiréd networks. Finally, the watermark information is encoded/decoded through the improved ScreenNet model using the ripped archive database as the noise layer. The experiments prove that the proposed algorithm is able to resist anti-screenshot attacks and achieves the ability to detect watermark information to leak the trace of ripped images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助江湖樊南生采纳,获得10
2秒前
gkkkk发布了新的文献求助10
2秒前
陈政豪发布了新的文献求助10
3秒前
李健的粉丝团团长应助echo采纳,获得10
5秒前
君为臣纲发布了新的文献求助10
5秒前
6秒前
6秒前
1280065188发布了新的文献求助10
7秒前
soda完成签到,获得积分10
10秒前
钻石棋发布了新的文献求助10
11秒前
小雨完成签到,获得积分10
11秒前
香蕉觅云应助哈哈哈采纳,获得10
12秒前
谨慎长颈鹿完成签到,获得积分10
12秒前
酸奶烤着吃完成签到,获得积分10
14秒前
hehe完成签到 ,获得积分10
14秒前
wwb发布了新的文献求助80
15秒前
adi完成签到,获得积分10
15秒前
16秒前
18秒前
默然的歌完成签到 ,获得积分10
18秒前
白子双发布了新的文献求助10
20秒前
21秒前
kikichiu完成签到,获得积分10
22秒前
刚睡醒发布了新的文献求助10
23秒前
英俊的铭应助wwb采纳,获得10
24秒前
小蘑菇应助义气的水蓝采纳,获得10
27秒前
科研通AI6应助lisitian采纳,获得10
27秒前
哈哈哈发布了新的文献求助10
28秒前
28秒前
滴答滴答滴完成签到,获得积分10
28秒前
李爱国应助YY采纳,获得10
29秒前
lyz完成签到,获得积分10
32秒前
dzll完成签到,获得积分10
33秒前
36秒前
37秒前
38秒前
机灵的大白菜完成签到 ,获得积分10
39秒前
SunnyLife发布了新的文献求助10
42秒前
LHR发布了新的文献求助10
45秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900