Anti-Screenshot Watermarking Algorithm for Archival Image Based on Deep Learning Model

数字水印 算法 人工智能 图像(数学) 计算机科学 模式识别(心理学) 数学
作者
Gu Wei,Ching‐Chun Chang,Yu Bai,Yunyuan Fan,Liang Tao,Li Li
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:25 (2): 288-288 被引量:7
标识
DOI:10.3390/e25020288
摘要

Over recent years, there are an increasing number of incidents in which archival images have been ripped. Leak tracking is one of the key problems for anti-screenshot digital watermarking of archival images. Most of the existing algorithms suffer from low detection rate of watermark, because the archival images have a single texture. In this paper, we propose an anti-screenshot watermarking algorithm for archival images based on Deep Learning Model (DLM). At present, screenshot image watermarking algorithms based on DLM can resist screenshot attacks. However, if these algorithms are applied on archival images, the bit error rate (BER) of the image watermark will increase dramatically. Archival images are ubiquitous, so in order to improve the robustness of archival image anti-screenshot, we propose a screenshot DLM "ScreenNet". It aims to enhance the background and enrich the texture with style transfer. Firstly, a preprocessing process based on style transfer is added before the insertion of an archival image into the encoder to reduce the influence of the screenshot process of the cover image. Secondly, the ripped images are usually moiréd, so we generate a database of ripped archival images with moiréd by means of moiréd networks. Finally, the watermark information is encoded/decoded through the improved ScreenNet model using the ripped archive database as the noise layer. The experiments prove that the proposed algorithm is able to resist anti-screenshot attacks and achieves the ability to detect watermark information to leak the trace of ripped images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TIAN发布了新的文献求助10
2秒前
一块云发布了新的文献求助10
3秒前
3秒前
叶y应助是赤赤呀采纳,获得10
6秒前
7秒前
热心市民小红花应助阿槿采纳,获得10
7秒前
热心市民小红花应助阿槿采纳,获得10
7秒前
香蕉觅云应助xiaohu6311采纳,获得10
8秒前
nanali19完成签到,获得积分10
9秒前
紧张的志泽完成签到 ,获得积分10
10秒前
顾矜应助巴适地瓜采纳,获得10
13秒前
淳于君浩完成签到,获得积分10
13秒前
13秒前
小田完成签到,获得积分20
14秒前
刘敏完成签到 ,获得积分10
14秒前
qing发布了新的文献求助10
16秒前
伯赏思山完成签到,获得积分10
16秒前
赘婿应助闪闪的屁股采纳,获得10
16秒前
李爱国应助半夏采纳,获得10
17秒前
18秒前
aixin完成签到,获得积分10
20秒前
Jourmore完成签到,获得积分10
20秒前
小房子完成签到,获得积分10
21秒前
阿槿完成签到,获得积分20
21秒前
21秒前
Owen应助ddddd采纳,获得10
21秒前
22秒前
li发布了新的文献求助10
24秒前
Owen应助YML采纳,获得10
24秒前
闪闪的屁股完成签到,获得积分10
24秒前
27秒前
称心芷巧发布了新的文献求助10
27秒前
28秒前
YML完成签到,获得积分10
31秒前
33秒前
大气白翠完成签到,获得积分10
33秒前
33秒前
九九完成签到,获得积分10
34秒前
礽粥粥完成签到,获得积分10
35秒前
青仔仔完成签到,获得积分10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150