反向传播
计算机科学
编码(集合论)
人工神经网络
人工智能
模式识别(心理学)
领域(数学分析)
任务(项目管理)
字符识别
机器学习
语音识别
图像(数学)
数学
工程类
集合(抽象数据类型)
数学分析
程序设计语言
系统工程
作者
Yann LeCun,Bernhard E. Boser,John S. Denker,D. Henderson,Richard Howard,W. Hubbard,L. D. Jackel
标识
DOI:10.1162/neco.1989.1.4.541
摘要
The ability of learning networks to generalize can be greatly enhanced by providing constraints from the task domain. This paper demonstrates how such constraints can be integrated into a backpropagation network through the architecture of the network. This approach has been successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service. A single network learns the entire recognition operation, going from the normalized image of the character to the final classification.
科研通智能强力驱动
Strongly Powered by AbleSci AI