Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS)

EDAS系统 多准则决策分析 托普西斯 计算机科学 数学优化 数学 人工智能 运筹学 数据挖掘 分布估计算法
作者
Mehdi Keshavarz-Ghorabaee,Edmundas Kazimieras Zavadskas,Laya Olfat,Zenonas Turskis
出处
期刊:Informatica (lithuanian Academy of Sciences) [Vilnius University]
卷期号:26 (3): 435-451 被引量:1009
标识
DOI:10.15388/informatica.2015.57
摘要

An effective way for managing and controlling a large number of inventory items or stock keeping units (SKUs) is the inventory classification. Traditional ABC analysis which based on only a single criterion is commonly used for classification of SKUs. However, we should consider inventory classification as a multi-criteria problem in practice. In this study, a new method of Evaluation based on Distance from Average Solution (EDAS) is introduced for multi-criteria inventory classification (MCIC) problems. In the proposed method, we use positive and negative distances from the average solution for appraising alternatives (SKUs). To represent performance of the proposed method in MCIC problems, we use a common example with 47 SKUs. Comparing the results of the proposed method with some existing methods shows the good performance of it in ABC classification. The proposed method can also be used for multi-criteria decision-making (MCDM) problems. A comparative analysis is also made for showing the validity and stability of the proposed method in MCDM problems. We compare the proposed method with VIKOR, TOPSIS, SAW and COPRAS methods using an example. Seven sets of criteria weights and Spearman’s correlation coefficient are used for this analysis. The results show that the proposed method is stable in different weights and well consistent with the other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
独步出营完成签到 ,获得积分10
1秒前
sheepm完成签到,获得积分10
1秒前
英姑应助Hey采纳,获得10
2秒前
丁点发布了新的文献求助10
3秒前
霍仁维思发布了新的文献求助10
3秒前
sswbzh应助Honeydukes采纳,获得50
4秒前
4秒前
还没想好完成签到,获得积分10
4秒前
5秒前
风中的善愁完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
ASHUN完成签到,获得积分10
9秒前
9秒前
慕青应助沈格采纳,获得10
11秒前
西奥发布了新的文献求助10
11秒前
波宝撒发布了新的文献求助10
11秒前
yaoyinlin发布了新的文献求助10
11秒前
都暻秀女朋友完成签到,获得积分10
11秒前
BeautyZ发布了新的文献求助10
12秒前
zz321完成签到,获得积分10
12秒前
13秒前
13秒前
Hey发布了新的文献求助10
13秒前
小蘑菇应助转转采纳,获得30
13秒前
123456完成签到,获得积分10
13秒前
14秒前
14秒前
rainy77完成签到 ,获得积分10
15秒前
libra发布了新的文献求助10
15秒前
zfd完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027