Simulation from a known Cox MSM using standard parametric models for the g-formula

比例危险模型 计量经济学 统计 回归 回归分析 混淆 参数统计 计算机科学 数学
作者
Jessica G. Young,Eric J. Tchetgen Tchetgen
出处
期刊:Statistics in Medicine [Wiley]
卷期号:33 (6): 1001-1014 被引量:17
标识
DOI:10.1002/sim.5994
摘要

It is routinely argued that, unlike standard regression-based estimates, inverse probability weighted (IPW) estimates of the parameters of a correctly specified Cox marginal structural model (MSM) may remain unbiased in the presence of a time-varying confounder affected by prior treatment. Previously proposed methods for simulating from a known Cox MSM lack knowledge of the law of the observed outcome conditional on the measured past. Although unbiased IPW estimation does not require this knowledge, standard regression-based estimates rely on correct specification of this law. Thus, in typical high-dimensional settings, such simulation methods cannot isolate bias due to complex time-varying confounding as it may be conflated with bias due to misspecification of the outcome regression model. In this paper, we describe an approach to Cox MSM data generation that allows for a comparison of the bias of IPW estimates versus that of standard regression-based estimates in the complete absence of model misspecification. This approach involves simulating data from a standard parametrization of the likelihood and solving for the underlying Cox MSM. We prove that solutions exist and computations are tractable under many data-generating mechanisms. We show analytically and confirm in simulations that, in the absence of model misspecification, the bias of standard regression-based estimates for the parameters of a Cox MSM is indeed a function of the coefficients in observed data models quantifying the presence of a time-varying confounder affected by prior treatment. We discuss limitations of this approach including that implied by the ‘g-null paradox’. Copyright © 2013 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘可乐发布了新的文献求助10
刚刚
弹簧豆发布了新的文献求助10
刚刚
烟花应助QZF采纳,获得10
1秒前
生姜发布了新的文献求助10
1秒前
安德鲁森完成签到 ,获得积分10
2秒前
范雅琦发布了新的文献求助10
2秒前
dala发布了新的文献求助10
3秒前
bubble发布了新的文献求助10
5秒前
yiyi完成签到,获得积分10
5秒前
阿琳发布了新的文献求助10
5秒前
6秒前
6秒前
鹌鹑蛋发布了新的文献求助38
8秒前
Akim应助小胡采纳,获得10
8秒前
852应助kk采纳,获得30
8秒前
周周发布了新的文献求助10
8秒前
9秒前
禾伙人发布了新的文献求助10
9秒前
天天快乐应助lunar采纳,获得10
10秒前
Renee应助玼桃树采纳,获得50
10秒前
10秒前
10秒前
宁静致远发布了新的文献求助10
11秒前
11秒前
梓泽丘墟发布了新的文献求助10
13秒前
萌宝发布了新的文献求助10
14秒前
fifteen发布了新的文献求助10
14秒前
YZT8848完成签到,获得积分10
15秒前
smkmfy完成签到,获得积分10
15秒前
17秒前
西伯利亚蟑螂玩冰嬉完成签到 ,获得积分10
17秒前
18秒前
周小凡发布了新的文献求助10
19秒前
日月山河永在完成签到,获得积分10
19秒前
19秒前
miao123完成签到 ,获得积分10
19秒前
脑洞疼应助繁荣的沛白采纳,获得10
19秒前
听雨发布了新的文献求助10
20秒前
21秒前
所所应助阿琳采纳,获得10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160823
求助须知:如何正确求助?哪些是违规求助? 2812005
关于积分的说明 7894119
捐赠科研通 2470886
什么是DOI,文献DOI怎么找? 1315786
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053