WGCNA: an R package for weighted correlation network analysis

基因共表达网络 计算机科学 软件 数据挖掘 网络分析 相关性 计算生物学 基因调控网络 DNA微阵列 接口 生物网络 R包 生物 基因 基因表达 遗传学 基因本体论 数学 几何学 计算科学 物理 量子力学 计算机硬件 程序设计语言
作者
Peter Langfelder,Steve Horvath
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:9 (1) 被引量:19897
标识
DOI:10.1186/1471-2105-9-559
摘要

Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial.The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings.The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大翟发布了新的文献求助10
2秒前
小强123完成签到,获得积分10
3秒前
3秒前
Polymer72发布了新的文献求助30
4秒前
科研通AI2S应助Cathy采纳,获得10
5秒前
上官若男应助liwang采纳,获得10
5秒前
时聿发布了新的文献求助20
6秒前
加油发布了新的文献求助10
8秒前
8秒前
如愿完成签到 ,获得积分0
8秒前
10秒前
俺村俺最牛完成签到,获得积分10
10秒前
高高不高完成签到,获得积分10
10秒前
迪达拉完成签到,获得积分10
11秒前
TS发布了新的文献求助10
12秒前
12秒前
Cathy完成签到,获得积分10
12秒前
饽饽饽饽发布了新的文献求助10
12秒前
乐乐应助学术渣渣采纳,获得10
12秒前
Gtty完成签到,获得积分10
13秒前
水博士发布了新的文献求助10
15秒前
15秒前
无私的电灯胆完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
吕大本事发布了新的文献求助10
17秒前
幽默科研人完成签到,获得积分20
18秒前
Singularity应助慕子默采纳,获得10
19秒前
20秒前
wang发布了新的文献求助10
20秒前
21秒前
懒洋洋完成签到,获得积分10
21秒前
21秒前
21秒前
卡哥完成签到,获得积分10
21秒前
22秒前
鲨鱼牙齿应助饽饽饽饽采纳,获得10
22秒前
懒熊发布了新的文献求助10
22秒前
坚定的莹完成签到 ,获得积分10
23秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334609
求助须知:如何正确求助?哪些是违规求助? 2963868
关于积分的说明 8611689
捐赠科研通 2642793
什么是DOI,文献DOI怎么找? 1446965
科研通“疑难数据库(出版商)”最低求助积分说明 670499
邀请新用户注册赠送积分活动 658693