WGCNA: an R package for weighted correlation network analysis

基因共表达网络 计算机科学 软件 数据挖掘 网络分析 相关性 计算生物学 基因调控网络 DNA微阵列 接口 生物网络 R包 生物 基因 基因表达 遗传学 基因本体论 数学 几何学 计算科学 物理 量子力学 计算机硬件 程序设计语言
作者
Peter Langfelder,Steve Horvath
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:9 (1) 被引量:20525
标识
DOI:10.1186/1471-2105-9-559
摘要

Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial.The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings.The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_89eBO8完成签到 ,获得积分10
刚刚
隐形曼青应助ZeJ采纳,获得10
刚刚
刚刚
隐形曼青应助温暖的钻石采纳,获得10
1秒前
Khr1stINK发布了新的文献求助10
2秒前
123cxj发布了新的文献求助10
3秒前
星辰大海应助红红采纳,获得10
3秒前
sweetbearm应助小周采纳,获得10
4秒前
科研通AI5应助赖道之采纳,获得10
4秒前
5秒前
HonamC完成签到,获得积分10
6秒前
十三十四十五完成签到,获得积分10
7秒前
潇洒的问夏完成签到 ,获得积分10
9秒前
无声瀑布完成签到,获得积分10
9秒前
Bingtao_Lian完成签到 ,获得积分10
10秒前
小布丁完成签到 ,获得积分10
10秒前
竹筏过海应助季生采纳,获得30
11秒前
12秒前
buno应助22采纳,获得10
13秒前
赘婿应助TT采纳,获得10
14秒前
14秒前
14秒前
15秒前
Jenny应助赖道之采纳,获得10
17秒前
依古比古完成签到 ,获得积分10
19秒前
汎影发布了新的文献求助10
19秒前
小二完成签到,获得积分10
19秒前
20秒前
22秒前
顾矜应助长情洙采纳,获得10
22秒前
monere发布了新的文献求助30
22秒前
Xiaoxiao应助汉关采纳,获得10
24秒前
24秒前
汎影完成签到,获得积分10
25秒前
26秒前
Chen发布了新的文献求助10
28秒前
WW完成签到,获得积分10
28秒前
30秒前
hyjcnhyj完成签到,获得积分10
31秒前
英姑应助赖道之采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808