WGCNA: an R package for weighted correlation network analysis

基因共表达网络 计算机科学 软件 数据挖掘 网络分析 相关性 计算生物学 基因调控网络 DNA微阵列 接口 生物网络 R包 生物 基因 基因表达 遗传学 基因本体论 数学 物理 程序设计语言 量子力学 计算机硬件 几何学 计算科学
作者
Peter Langfelder,Steve Horvath
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:9 (1) 被引量:22931
标识
DOI:10.1186/1471-2105-9-559
摘要

Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial.The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings.The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿峤完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
yang发布了新的文献求助10
4秒前
李健应助火星上的迎天采纳,获得10
5秒前
yr发布了新的文献求助10
5秒前
5秒前
领导范儿应助数学情缘采纳,获得10
6秒前
点点完成签到,获得积分10
7秒前
Damtree发布了新的文献求助10
7秒前
研友_8Qxp7Z发布了新的文献求助10
8秒前
冷静的小虾米完成签到 ,获得积分10
9秒前
英姑应助晶婷采纳,获得10
10秒前
武雨寒完成签到,获得积分20
10秒前
SciGPT应助科研通管家采纳,获得10
11秒前
小杭76应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
小杭76应助科研通管家采纳,获得10
11秒前
ding应助莎莎采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
科目三应助洁净的千凡采纳,获得10
12秒前
13秒前
14秒前
武雨寒发布了新的文献求助10
14秒前
852应助浅夏丶采纳,获得10
15秒前
17秒前
博珺辰发布了新的文献求助10
17秒前
漫漫完成签到 ,获得积分10
17秒前
19秒前
汉堡包应助猫的树采纳,获得10
22秒前
桐桐应助动人的代芹采纳,获得10
23秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
syzh完成签到,获得积分10
27秒前
27秒前
万能图书馆应助XL神放采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439