Critical Assessment of an Enhanced Traffic Sign Detection Method Using Mobile LiDAR and INS Technologies

激光雷达 交通标志 计算机科学 运输工程 可靠性(半导体) 移动地图 钥匙(锁) 测距 领域(数学) 符号(数学) 工程类 遥感 计算机安全 电信 全球定位系统 地理 数学分析 数学 功率(物理) 物理 量子力学 纯数学
作者
Chengbo Ai,Yichang Tsai
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:141 (5) 被引量:34
标识
DOI:10.1061/(asce)te.1943-5436.0000760
摘要

Traffic signs are important roadway assets that provide critical guidance, including regulations and safety-related information, to road users. Traffic signs need to be inventoried by transportation agencies. However, the traditional manual methods carried out in the field are dangerous, labor-intensive, and time-consuming. There is a need to develop alternative methods to cost-effectively inventory traffic signs. The research reported in this paper, sponsored by the U.S. DOT Research and Innovative Technology Administration Program, is to critically assess an alternative traffic sign inventory method using mobile light detection and ranging (LiDAR), and inertial navigation system (INS), technologies. The contribution of this paper is three-fold, as follows: (1) an alternative traffic sign inventory method is proposed using mobile LiDAR and INS technologies, (2) a key LiDAR parameter calibration procedure (including a sensitivity study of the key parameters) is proposed to achieve a desirable traffic sign detection rate, and (3) the reliability and productivity of the proposed method is critically assessed (by quantitatively measuring the detection rate and processing time of the proposed method). Actual data, collected on an interstate highway (I-95) and a local urban road (37th Street in Savannah, Georgia), were used to critically assess the performance. Results show that the proposed method can correctly detect 94.0 and 91.4% of the traffic signs on interstate highways and local urban roads with less than seven false-positive cases. Results also show that when compared to the in-field manual survey test conducted by Georgia DOT, the proposed method can potentially reduce the processing time for sign inventory by approximately 76%. The results demonstrate that the proposed method is promising for establishing a cost-effective traffic sign inventory method for transportation agencies. Future research directions are also recommended.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易水完成签到 ,获得积分10
刚刚
上官若男应助nhh采纳,获得10
3秒前
调皮的问丝完成签到,获得积分10
3秒前
科研通AI6应助鼠大帅采纳,获得10
4秒前
4秒前
5秒前
想不出来发布了新的文献求助200
11秒前
12秒前
浅笑_随风完成签到,获得积分10
13秒前
务实的凝天完成签到,获得积分10
14秒前
15秒前
无花果应助热心的血茗采纳,获得10
15秒前
17秒前
XXXXXX完成签到,获得积分10
18秒前
19秒前
20秒前
XXXXXX发布了新的文献求助30
21秒前
充电宝应助泪雨煊采纳,获得10
21秒前
ll发布了新的文献求助10
21秒前
22秒前
谦虚发布了新的文献求助10
23秒前
Ava应助musicyy222采纳,获得10
23秒前
学术地雷发布了新的文献求助10
23秒前
nhh发布了新的文献求助10
24秒前
Lucas应助wonder123采纳,获得10
26秒前
li8888lili8888完成签到 ,获得积分10
28秒前
上善若水完成签到,获得积分10
28秒前
29秒前
景易完成签到,获得积分10
32秒前
33完成签到,获得积分10
34秒前
musicyy222发布了新的文献求助10
34秒前
敏er完成签到,获得积分10
36秒前
整齐便当发布了新的文献求助10
36秒前
追寻向松完成签到,获得积分10
38秒前
谦虚完成签到 ,获得积分20
39秒前
麦子完成签到 ,获得积分10
40秒前
42秒前
自信璎完成签到,获得积分10
46秒前
46秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560365
求助须知:如何正确求助?哪些是违规求助? 4645513
关于积分的说明 14675355
捐赠科研通 4586641
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951