摘要
Photochemistry and PhotobiologyVolume 50, Issue 6 p. 883-894 VIBRATIONAL SPECTRA OF RHODOPSIN AND BACTERIORHODOPSIN Teizo Kitagawa, Teizo Kitagawa Institute for Molecular Science Myodaiji, Okazaki 444 Japan *To whom correspondence should be addressed.Search for more papers by this authorAkio Maeda, Akio Maeda Faculty of Science Kyoto University Sakyoku, Kyoto 606 JapanSearch for more papers by this author Teizo Kitagawa, Teizo Kitagawa Institute for Molecular Science Myodaiji, Okazaki 444 Japan *To whom correspondence should be addressed.Search for more papers by this authorAkio Maeda, Akio Maeda Faculty of Science Kyoto University Sakyoku, Kyoto 606 JapanSearch for more papers by this author First published: December 1989 https://doi.org/10.1111/j.1751-1097.1989.tb02918.xCitations: 31AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Alshuth, T. and M. Stockburger (1986) Time-resolved resonance Raman studies on the photochemical cycle of bacteriorhodopsin. Photochem. Photobiol. 43, 55–66. 10.1111/j.1751-1097.1986.tb05591.x CASWeb of Science®Google Scholar Alshuth, T., M. Stockburger, P. Hegemann and D. Oesterhelt (1985) Structure of the retinal chromophore in halorhodopsin. FEBS Lett. 179, 55–59. 10.1016/0014-5793(85)80190-3 CASWeb of Science®Google Scholar Ames, J. B., S.P.A. Fodor, R. Gebhard, J. Rapp, E. M. M. van den Berg, J. Lugtenburg and R. A. Mathies (1989) Bacteriorhodopsin M412 intermediate contains a 13-cis, 14-s-trans, 15-aMfi-retinal Schiff base chromophore. Biochemistry 28, 3681–3687. 10.1021/bi00435a009 CASPubMedWeb of Science®Google Scholar Argade, P. V., K. J. Rothschild, A. H. Kawamoto, J. Herzfeld, and W. C. Herlify (1981) Resonance Raman spectroscopy of specially [ε-15N]lysine-labeled bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 78, 1643–1646. 10.1073/pnas.78.3.1643 CASPubMedWeb of Science®Google Scholar Argade, P. V. and K. J. Rothschild (1983) Quantitative analysis of resonance Raman spectra of purple membrane from Halobacterium halobium; L550 intermediate. Biochemistry 22, 3460–3466. 10.1021/bi00283a024 CASWeb of Science®Google Scholar Atkinson, G. H., T. L. Brack, D. Blanchard and G. Rumbles (1989) Picosecond time-resolved resonance Raman spectroscopy of the initial trans to cis isomeriz-ation in the bacteriorhodopsin photocycle. Chem. Phvs. 131, 1–15. 10.1016/0301-0104(89)87077-6 CASGoogle Scholar Aton, B., A. G. Doukas, R. H. Callendar, B. Becher and T. G. Ebrey (1977) Resonance Raman studies of the purple membrane. Biochemistry 16, 2995–2999. 10.1021/bi00632a029 CASPubMedWeb of Science®Google Scholar Aton, B., A. G. Doukas, D. Narva, R. H. Callender, U. Dinur and B. Honig (1980) Resonance Raman studies of the primary photochemical event in visual pigments. Biophys. J. 29, 99–94. 10.1016/S0006-3495(80)85119-8 Google Scholar Baasov, T., N. Friedman and M. Sheves (1987) Factors affecting the C=N stretching in protonated retinal Schiff base: A model study for bacteriorhodopsin and visual pigments. Biochemistry 26, 3210–3217. 10.1021/bi00385a041 CASPubMedWeb of Science®Google Scholar Baasov, T. and M. Sheves (1985) Model compounds for the study of spectroscopic properties of visual pigments and bacteriorhodopsin. J. Am. Chem. Soc. 107, 7524–7533. 10.1021/ja00311a050 CASWeb of Science®Google Scholar Baasov, T. and M. Sheves (1986) Alteration of pATa of the bacteriorhodopsin protonated Schiff base. A study with model compounds. Biochemistry 25, 5249–5258. 10.1021/bi00366a040 CASWeb of Science®Google Scholar Bagley, K. A., V. Balogh-Nair, A. A. Croteau, G. Dol-linger, T. G. Ebrey, L. Eisenstein, M. K. Hong, K. Nakanishi and J. Vittow (1985) Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature. Biochemistry 24, 6055–6071. 10.1021/bi00343a006 CASPubMedWeb of Science®Google Scholar Bagley, K. A., L. Eisenstein, T. G. Ebrey and M. Tsuda (1989) A comparative study of the infrared difference spectra for octopus and bovine rhodopsin and their bathorhodopsin in photointermediates. Biochemistry 28, 3366–3373. 10.1021/bi00434a036 CASPubMedWeb of Science®Google Scholar Baribeau, J. and F. Boucher (1987) Is the purple color of bacteriorhodopsin maintained by lipid-protein inter-actions?:B('oc/!im. Biophys. Acta 890, 275–278. 10.1016/0005-2728(87)90029-6 CASWeb of Science®Google Scholar Barry, B. and R. A. Mathies (1982) Resonance Raman microscopy of rod and cone photoreceptors. J. Cell Biol. 94, 479–482. 10.1083/jcb.94.2.479 CASPubMedWeb of Science®Google Scholar Barry, B. and R. A. Mathies (1987) Raman microscope studies on the primary photochemistry of vertebrate visual pigments with absorption maxima from 430 to 502 nm. Biochemistry 26 59–64. 10.1021/bi00375a009 CASPubMedWeb of Science®Google Scholar Barry, B., R. A. Mathies, J. Pardoen and J. Lugtenburg (1987) Raman microscope and quantum yield studies on the primary photochemistry of A2-visual pigments. Biophys. J. 52, 603–610. 10.1016/S0006-3495(87)83250-2 PubMedWeb of Science®Google Scholar Blanck, A., and D. Oesterhelt (1987) The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO. J. 6, 265–273. 10.1002/j.1460-2075.1987.tb04749.x CASPubMedWeb of Science®Google Scholar Brack, T. L. and G. H. Atkinson (1989) Picosecond time-resolved resonance Raman spectrum of the K590 intermediate in the room temperature bacteriorhodopsin photocycle. J. Mol. Struct. In press. Google Scholar Braiman, M., P. L. Ahl and K. J. Rothschild (1987) Millisecond Fourier transform infrared difference spectra of bacteriorhodopsin's M412 photoproduct. Proc. Natl. Acad. Sci. U.S.A. 84, 5221–5225. 10.1073/pnas.84.15.5221 CASPubMedWeb of Science®Google Scholar Braiman, M. S. and R. A. Mathies (1982) Resonance Raman spectra of bacteriorhodopsin's primary photo-product: Evidence for a distorted 13-cis retinal chromophore. Proc. Natl. Acad. Sci. U.S.A. 79, 403–407. 10.1073/pnas.79.2.403 CASPubMedWeb of Science®Google Scholar Braiman, M. S., T. Mogi, T. Marti, L J. Stern, H. G. Khorana and K. J. Rothschild (1988a) Vibrational spectroscopy of bacteriorhodopsin mutants: Light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry 27, 8516–8520. 10.1021/bi00423a002 CASPubMedWeb of Science®Google Scholar Braiman, M. S., T. Mogi, J. L. Stern, N. R. Hackett, B. H. Chao, H. G. Khorana and K. J. Rothschild (1988b) Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine–185 protonates and deprotonates during the photocycle. Proteins 3, 219–229. 10.1002/prot.340030403 CASPubMedWeb of Science®Google Scholar Braiman, M. S. and K. J. Rothschild (1988) Fourier transform infrared techniques for probing membrane protein structure. Annu. Rev. Biophvs. Biophys. Chem. 17, 541–570. 10.1146/annurev.bb.17.060188.002545 CASPubMedWeb of Science®Google Scholar Butt, H. J., K. Fendler, E. Bamberg, J. Tittor and D. Oesterhelt (1989) Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J. 8, 1657–1663. 10.1002/j.1460-2075.1989.tb03556.x CASPubMedWeb of Science®Google Scholar Chang, C. -H., S. Y. Liu, R. Jonas and R. Govindjee (1987) The pink membrane, the stable photoproduct of deionized purple membrane. Biophys. J. 52 617–621. 10.1016/S0006-3495(87)83252-6 CASPubMedWeb of Science®Google Scholar Curry, B., I. Palings, A. Broek, J. Lugtenburg and R. A. Mathies (1982) Vibrational analysis of M-trans-retinal. J. Am. Chem. Soc. 104, 5274–5286. 10.1021/ja00384a003 CASWeb of Science®Google Scholar Curry, B., I. Palings, A. D. Broek, J. A. Pardoen, J. Lugtenburg and R. A. Mathies (1985) Vibrational analysis of the retinal isomers. In Advances in Infrared and Raman Spectroscopy Vol. 12, pp. 115–178. Google Scholar Curry, B., I. Palings, A. D. Broek, J. A. Pardoen, P. P. J. Mulder, J. Lugtenburg and R. A. Mathies (1984) Vibrational analysis of 13-cis retinal. J. Phys. Chem. 88, 688–702. 10.1021/j150648a015 CASWeb of Science®Google Scholar Dancshazy, ZS., R. Govindjee and T. G. Ebrey (1988) Independent photocycle of the spectrally distinct forms of bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 85, 6358–6361. 10.1073/pnas.85.17.6358 CASPubMedWeb of Science®Google Scholar Dancshazy, Zs., R. Govindjee, B. Nelson and T. G. Ebrey (1986) A new intermediate in the photocycle of bacteriorhodopsin. FEBS Lett. 209, 44–48. 10.1016/0014-5793(86)81081-X CASWeb of Science®Google Scholar DeGrip, W. J. (1988) Recent chemical studies related to vision. Photochem. Photobiol. 48, 799–810. 10.1111/j.1751-1097.1988.tb02895.x PubMedWeb of Science®Google Scholar DeGrip, W. J., D. Gray, J. Gillespie, P. H. M. Bovee, E. M. M. Van den Berg, J. Lugtenburg and K. J. Rothschild (1988) Photoexcitation of rhodopsin: Conformation changes in the chromophore, protein and associated lipids as determined by FTIR difference spectroscopy. Photochem. Photobiol. 48, 497–504. 10.1111/j.1751-1097.1988.tb02852.x CASPubMedWeb of Science®Google Scholar Dencher, N. A. (1983) The five retinal-protein pigments of halobacteria: bacteriorhodopsin, halorhodopsin, P565, P370, and slow-cycling rhodopsin. Photochem. Photobiol. 38, 753–768. 10.1111/j.1751-1097.1983.tb03611.x CASWeb of Science®Google Scholar Deng, H. and R. H. Callender (1987) A study of the Schiff base mode in bovine rhodopsin and bacteriorhodopsin. Biochemistry 26, 7418–7426. 10.1021/bi00397a033 CASPubMedWeb of Science®Google Scholar Deng, H., C. Pande, R.'h. Callender and T. G. Ebrey (1985) A detailed resonance Raman study of the M412 intermediate in the bacteriorhodopsin photocvcle. Photochem. Photobiol. 41, 467–470. 10.1111/j.1751-1097.1985.tb03513.x CASPubMedWeb of Science®Google Scholar Diller, R. and M. Stockburger (1988) Kinetic resonance Raman studies reveal different conformational states of bacteriorhodopsin. Biochemistry 27, 7641–7651. 10.1021/bi00420a011 CASWeb of Science®Google Scholar Diller, R., M. Stockburger, D. Oesterhelt and J. Tittor (1987) Resonance Raman study of intermediates of the halorhodopsin photocycle. FEBS Lett. 217, 297–304. 10.1016/0014-5793(87)80682-8 CASWeb of Science®Google Scholar Dollinger, G., L. Eisenstein, S. -L. Lin, K. Nakanishi, K. Odashima and J. Termini (1986a) Bacteriorhodopsin: Fourier transform infrared methods for studies of protonation of carboxyl groups. Meth. Enzvmol. 127, 649–662. 10.1016/0076-6879(86)27051-2 CASPubMedWeb of Science®Google Scholar Dollinger, G., L. Eisenstein, S. -L. Lin, K. Nakanishi and J. Termini (1986b) Fourier transform infrared spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine. Biochemistry 25, 6524–6533. 10.1021/bi00369a028 CASPubMedWeb of Science®Google Scholar Doukas, A. G., B. Aton, R. H. Callender and T. G. Ebrey (1978) Resonance Raman studies of bovine metarhodopsin I and metarhodospin II. Biochemistry 17, 2430–2435. 10.1021/bi00605a028 CASPubMedWeb of Science®Google Scholar Doukas, A. G., A. Pande, T. Suzuki, R. H. Callender, B. Honig. and M. Ottolenghi (1981) On the mechanism of hydrogen-deuterium exchange in bacteriorhodopsin. Biophys. J. 33, 275–280. 10.1016/S0006-3495(81)84889-8 CASPubMedWeb of Science®Google Scholar Drachev, L. A., A. D. Kaulen, V. P. Skulachev and V. Zorina (1986). Protonation of a novel intermediate P is involved in the M-bR step of the bacteriorhodopsin photocycle. FEBS Lett. 209, 316–320. 10.1016/0014-5793(86)81134-6 CASWeb of Science®Google Scholar Drachev, L. A., A. D. Kaulen, V. P. Skulachev and V. Zorina (1987): The mechanism of H+ transfer by bacteriorhodopsin: The properties and the function of intermediate P: FEBS Lett. 226, 139–144. Web of Science®Google Scholar Druckman, S., M. Ottolenghi, A. Pande, J. Pande and R. H. Callender (1982) Acid-base equilibrium of the Schiff base in bacteriorhodopsin. Biochemistry 21, 4953–4959. 10.1021/bi00263a019 PubMedWeb of Science®Google Scholar Earnest, T. N., P. Roepe, M. S. Braiman, J. Gillespie and K. J. Rothschild (1986) Orientation of the bacteriorhodopsin chromophore probed by polarized Fourier transform infrared difference spectroscopy. Biochemistry 25, 7793–7798. 10.1021/bi00372a002 CASPubMedWeb of Science®Google Scholar Eisenstein, L., S. -L. Lin, G. Dollinger, K. Odashima, J. Termini, K. Konno, W. -D. Ding and K. Nakanishi (1987) FTIR difference studies on apoproteins. Protonation stages of aspartic and glutamic acid residues during the photocycle of bacteriorhodopsin. J. Am. Chem. Soc. 109, 6860–6862. 10.1021/ja00256a055 CASWeb of Science®Google Scholar Engelhard, M., K. Gerwert, G. Hess, W. Kreuz and F. Siebert (1985) Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: An investigation by static and time-resolved infrared difference spectroscopy using [4-13C] aspartic acid labeled purple membrane. Biochemistry 24, 400–407. 10.1021/bi00323a024 CASPubMedWeb of Science®Google Scholar Eyring, G., B. Curry, A. Broek, J. Lugtenburg and R. Mathies (1982) Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and bathorodopsin. Biochemistry 21, 384–393. 10.1021/bi00531a028 CASPubMedWeb of Science®Google Scholar Fahmy, K., M. F. Grossjean, F. Siebert and P. Tavan (1989) The photoisomerization in bacteriorhodopsin studied by FTIR linear dichroism and photoselection experiments combined with quantum mechanical theoretical analysis. J. Mol. Struct. In press. Google Scholar Fischer, U. C., P. Towner and D. Oesterhelt (1981) Light-induced isomerization, at acidic pH, indicates hydrolysis of bacteriorhodopsin to bacterioopsin and 9-cis retinal. Photochem. Photobiol. 33, 529–537. 10.1111/j.1751-1097.1981.tb05456.x CASWeb of Science®Google Scholar Fodor, S. P. A., J. B. Ames, R. Gebhard, E. M. M. van-den Berg, W. Stoeckenius, J. Lugtenburg and R. A. Mathies (1988a) Chromophore structure in bac-teriorhodopsin's N intermediate: Implications for the proton pumping mechanism. Biochemistry 27, 7097–7101. 10.1021/bi00418a064 CASPubMedWeb of Science®Google Scholar Fodor, S. P. A., R. A. Bogomolni and R. A. Mathies (1987) Structure of the retinal chromophore in the hR, intermediate of halorhodopsin from the resonance Raman spectroscopy. Biochemistry 26, 6775–6778. 10.1021/bi00395a029 CASPubMedWeb of Science®Google Scholar Fodor, S. P. A., W. T. Pollard, R. Gebhard, E. M. M. van den Berg, J. Lugtenburg and R. A. Mathies (1988b) Bacteriorhodopsin's L550 intermediate contains a C14-C15s,-trans-retina/ chromophore. Proc. Natl. Acad. Sci. U.S.A. 85, 2156–2160. 10.1073/pnas.85.7.2156 CASPubMedWeb of Science®Google Scholar Ganter, U. M., W. Gaertner and F. Siebert (1988a) Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy. Biochemistry 27, 7480–7488. 10.1021/bi00419a046 CASPubMedWeb of Science®Google Scholar Ganter, U. M., E. D. Schmid, D. Perez-Sala, R. R. Rando and F. Siebert (1989) Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation. Biochemistry 28, 5954–5962. 10.1021/bi00440a036 CASPubMedWeb of Science®Google Scholar Ganter, U. M., E. D. Schmid and F. Siebert (1988b) The photoreaction of vacuum-dried rhodopsin at low temperature: evidence for charge stabilization by water. J. Photochem. Photobiol, B: Biology 2, 417–426. 10.1016/1011-1344(88)85070-X CASPubMedWeb of Science®Google Scholar Gerwert, K., B. Hess, J. Soppa and D. Oesterhelt (1989) Role ofaspartate–96 in proton translocation by bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 86, 4943–4947. 10.1073/pnas.86.13.4943 CASPubMedWeb of Science®Google Scholar Gerwert, K. and F. Siebert (1986) Evidence for light-induced 13-CM, 14-s-cis isomerization in bacteriorhodopsin obtained by FTIR difference spectroscopy using iso-topically labeled retinals. EMBO J. 5, 805–811. 10.1002/j.1460-2075.1986.tb04285.x CASPubMedWeb of Science®Google Scholar Groma, G. I. and Zs. Dancshazy (1986) How many M forms are there in the bacteriorhodopsin photocycle. Biophys. J. 50 357–366. 10.1016/S0006-3495(86)83469-5 CASPubMedWeb of Science®Google Scholar Grzesiek, S. and N. A. Dencher (1986) Time course and stoichiometry of light-induced proton release and uptake during the photocycle of bacteriorhodopsin. FEBS Lett. 208, 337–342. 10.1016/0014-5793(86)81045-6 CASWeb of Science®Google Scholar Hanamoto, J. H., P. Dupuis and M. A. El-Sayed (1984) On the protein (tyrosine(-chromophore (protonated Schiff base) coupling in bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 81, 7083–7087. 10.1073/pnas.81.22.7083 CASPubMedWeb of Science®Google Scholar Hildebrandt, P. and M. Stockburger (1984) Role of water in bacteriorhopsin's chromophore: Resonance Raman study. Biochemistry 23, 5539–5548. 10.1021/bi00318a025 CASWeb of Science®Google Scholar Hoffman, K. P. (1986) Photoproducts of rhodopsin in the disc membrane. Pholobiochem. Photobiophys. 13, 309–327. Google Scholar Holz, M., L. A. Drachev, T. Mogi, H. Otto, A. Kaulen, M. P. Heyn, V. P. Skulachev, H. G. Khorana (1989) Replacement of asparticacid–96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Proc. Natl.. Google Scholar Acad. Sci. U.S.A. 86, 2167–2171. Google Scholar Kakitani, H., T. Kakitani, H. Rodman, B. Honig and R. Callender (1983) Correlation of vibrational frequencies with absorption maxima in polyenens, rhodopsin, bacteriorhodopsin and retinal analogues. J. Phys. Chem. 87, 3620–3628. 10.1021/j100242a011 CASWeb of Science®Google Scholar Kimura, Y., A. Ikegami and W. Stoeckenius (1984) Salt and pH-dependent changes of the purple membrane absorption spectrum. Photochem. Photobiol 40, 641–646. 10.1111/j.1751-1097.1984.tb05353.x CASPubMedWeb of Science®Google Scholar Kitagawa, T. and M. Tsuda (1980) Resonance Raman studies of octopus acid and alkaline metarhodopsin. Biochim. Biophys. Acta 624, 211–217. 10.1016/0005-2795(80)90240-8 CASPubMedWeb of Science®Google Scholar Kouyama, T., A. -N. Kouyama, A. Ikegami, M. K. Mathew, and W. Stoeckenius (1988) Bacteriorhodopsin photoreaction: Identification of a long-lived intermediate N (P, R350) at high pH and its M-like photo-product. Biochemistry 27, 5855–5863. 10.1021/bi00416a006 CASPubMedWeb of Science®Google Scholar Koyama, Y., Y. Mukai, J. Umemura, M. Ito and K. Tsu-kida (1984) Raman and infrared spectra of the 1-cis and dicw isomers of retinal. J. Raman Spectrosc. 15, 300–307. 10.1002/jrs.1250150503 CASWeb of Science®Google Scholar Lanyi, J. K. (1986) Halorhodopsin: a light-driven chloride pump. Annu. Rev. Biophys. Biophys. Chem. 15, 11–28. 10.1146/annurev.bb.15.060186.000303 CASPubMedWeb of Science®Google Scholar Lanyi, J. K. and V. Vodyanoy (1986) Flash spectroscopic studies of the kinetics of the halorhodopsin photocycle. Biochemistry 25, 1465–1470. 10.1021/bi00354a042 CASPubMedWeb of Science®Google Scholar Lewis, A., J. P. Spoonhower, R. Bogomolni, R. Lozier and W. Stoeckenius (1974) Tunable laser resonance Raman spectroscopy of bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 71, 4462–4466. 10.1073/pnas.71.11.4462 CASPubMedWeb of Science®Google Scholar Li, Q. -Q., R. Govindjee and T. G. Ebrey (1984) A correlation between proton pumping and the bacteriorhodopsin photocycle. Proc. Natl. Acad. Sci. U.S.A. 81, 7079–7082. 10.1073/pnas.81.22.7079 CASPubMedWeb of Science®Google Scholar Lin, S.-L., P. Ormos, L. Eisenstein, R. Govindjee, K. Konno and K. Nakanishi (1987) Deprotonation of tyrosines in bacteriorhodopsin as studied by Fourier transform infrared spectroscopy with deuterium and nitrate labeling. Biochemistry 26, 8327–8331. 10.1021/bi00399a045 CASPubMedWeb of Science®Google Scholar Lopez-Garriga, J. J., G. T. Babcock and J. F. Harrison (1986a) Factors influencing the C=N stretching frequency in neutral and protonated Schiff s bases. J. Am. Chem. Soc. 108, 7241–7251. 10.1021/ja00283a019 CASWeb of Science®Google Scholar Lopez-Garriga, J. J., S. Hanton, G. T. Babcock and J. F. Harrison (1986b) Rehybridization of the C=N bond upon protonation of methylimine increases the C=N streching force constant. J. Am. Chem. Soc. 108, 7251–7254. 10.1021/ja00283a020 CASWeb of Science®Google Scholar Loppnow, G. R., B. A. Barry and R. A. Mathies (1989) Why are blue visual pigments blue? A resonance Raman microbe study. Proc. Natl. Acad. Sci. U.S.A. 86, 1515–1518. 10.1073/pnas.86.5.1515 CASPubMedWeb of Science®Google Scholar Loppnow, G. R. and R. A. Mathies (1989) A 77K cold stage for Raman microprobes. Rev. Sci. Inst. 60, 2628–2630. 10.1063/1.1140682 CASWeb of Science®Google Scholar Lugtenburg, J., R. A. Mathies, R. Griffin and J. Herz-feld (1988) Structure and function of rhodopsin from solid state NMR and resonance Raman spectroscopy of isotopic retinal derivatives. TIBS 13, 388–393. 10.1016/0968-0004(88)90181-8 CASPubMedWeb of Science®Google Scholar Lugtenburg, J., M. Muradin-Szweykowska, C. Heere-mans, J. A. Pardoen, G. S. Harbison, J. Herzfeld, R. G. Griffin, S. O. Smith, and R. A. Mathies (1986) Mechanism for opsin shift of retinals absorption in bacteriorhodopsin. J. Am. Chem. Soc. 108, 3104–3105. 10.1021/ja00271a050 CASWeb of Science®Google Scholar McMaster, E. and A. Lewis (1988) Evidence for light-induced lysine conformation changes during the primary event of the bacteriorhodopsin photocycle. Biochem. Biophys. Res. Commun. 156, 86–91. 10.1016/S0006-291X(88)80808-8 PubMedWeb of Science®Google Scholar Maeda, A. (1987) Structure of bacteriorhodopsin and halorhodopsin in relation to the pumping function. Springer Proc. Phys. 20, 203–212. 10.1007/978-3-642-72835-8_22 Google Scholar Maeda, A., T. Iwasa and T. Yoshizawa (1980) Formation of 9-cis and 11-cis retinal pigments from bacteriorhodop-sin by irradiating purple membrane in acid. Biochemistry 19 3825–3831. 10.1021/bi00557a027 CASPubMedWeb of Science®Google Scholar Maeda, A., T. Iwasa and T. Yoshizawa (1981) Photoreaction of the acidified form of bacteriorhodopsin and its 9-cis derivative in purple membrane at low temperature. Photochem. Photobiol. 33, 559–565. 10.1111/j.1751-1097.1981.tb05459.x Web of Science®Google Scholar Maeda, A., T. Ogura and T. Kitagawa (1986) Resonance Raman study on proton-dissociated state of bacteriorhodopsin: Stabilization of L-like intermediate having the M-trans chromophore. Biochemistry 25, 2798–2803. 10.1021/bi00358a010 CASWeb of Science®Google Scholar Maeda, A., T. Ogurusu, T. Yoshizawa and T. Kitagawa (1985) Resonance Raman study on binding of chloride to the chromophore of halorhodopsin. Biochemistry 24, 2517–2521. 10.1021/bi00331a018 CASWeb of Science®Google Scholar Maeda, A. and T. Yoshizawa (1982) Molecular transducing system in visual cells. Photochem. Photobiol. 35, 891–898. 10.1111/j.1751-1097.1982.tb02665.x PubMedWeb of Science®Google Scholar Marcus, M. A. and A. Lewis (1978) Resonance Raman spectroscopy of the retinylidene chromophore in bacteriorhodopsin (bR570), bR560, M412, and other intermediates: Structural conclusions based on kinetics, analogues, models, and isotopically labeled membranes. Biochemistry 17, 4722–4734. 10.1021/bi00615a019 CASPubMedWeb of Science®Google Scholar Marinetti, T., S. Subramaniam, T. Mogi, T. Marti and H. G. Khorana (1989) Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 86, 529–533. 10.1073/pnas.86.2.529 CASPubMedWeb of Science®Google Scholar Massig, G., M. Stockburger, W. Gaertner, D. Oesterhelt and P. Towner (1982) Structural conclusion on the Schiff base group of retinylidene chromophores in bacteriorhodopsin from characteristic vibrational bands in the resonance Raman spectra of BR570 (all-trans), BR603 (3-dehydroretinal) and BR548 (13-cis). J. Raman Spectrosc. 12, 287–294. 10.1002/jrs.1250120317 CASWeb of Science®Google Scholar Mathies, R. A., C. H. B. Cruz, W. T. Pollard and C. V. Shank (1988) Direct observation of the femoto-second excited-state cis-trans isomerization in bacteriorhodopsin. Science 240, 777–779. 10.1126/science.3363359 CASPubMedWeb of Science®Google Scholar Mathies, R. A., S. O. Smith and I. Palings (1987) Determination of retinal chromophore structure in rhodop-sins. In Biological Applications of Raman Spectroscopy. Vol. 2. (Edited byT. G. Spiro) pp. 59–108. Google Scholar Mogi, T., L. Stern, N. R. Hackett and H. G. Khorana (1987) Bacteriorhodopsin mutants containing single tyrosine to phenylalanine substitutions are all active in proton translocation. Proc. Natl. Acad. Sci. U.S.A. 84, 5595–5599. 10.1073/pnas.84.16.5595 PubMedWeb of Science®Google Scholar Mogi, T., L. J. Stern, T. Marti, B. H. Chao and H. G. Khorana (1988) Aspartic acid substitution affects proton translocation by bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 85, 4148–4152. 10.1073/pnas.85.12.4148 CASPubMedWeb of Science®Google Scholar Mowery, P. C., R. H. Lozier, Q. Chae, Y. -W. Tseng, M. Taylor, and W. Stoeckenius (1979) Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. Biochemistry 18, 4100–4107. 10.1021/bi00586a007 CASPubMedWeb of Science®Google Scholar Nabedryk, E. and J. Breton (1986) Polarized Fourier transform infrared spectroscopy of the M412 intermediate in the bacteriorhodopsin photocycle. FEBS Lett. 202, 356–360. 10.1016/0014-5793(86)80718-9 CASWeb of Science®Google Scholar Nakagawa, M., A. Maeda, T. Ogura and T. Kitagawa (1989a) Origin of Raman spectral difference between spinning cell and flow cell measurements for bacteriorhodopsin photointermediate. J. Raman Spectrosc. 20, 303–305. 10.1002/jrs.1250200506 Web of Science®Google Scholar Nakagawa, M., T. Ogura, A. Maeda and T. Kitagawa (1989b) Transient resonance Raman spectra of neutral and alkaline bacteriorhodopsin photointermediates observed with a double-beam flow apparatus: Presence of very fast decayin. M4I2. Biochemistry 28, 1347–1352. 10.1021/bi00429a061 Web of Science®Google Scholar Oesterhelt, D. and M. Stoeckenius (1973) Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. U.S.A. 70, 2853–2857. 10.1073/pnas.70.10.2853 CASPubMedWeb of Science®Google Scholar Ogura, T., A. Maeda, M. Nakagawa and T. Kitagawa (1987) Transient resonance Raman spectra of bacterio-rhodopsin and halorhodopsin. Springer Proc. Phys. 20, 233–242. 10.1007/978-3-642-72835-8_25 Google Scholar Ogurusu, T., A. Maeda, N. Sasaki and T. Yoshizawa (1982) Effects of chloride on the absorption spectrum and photoreactions of halorhodopsin. Biochim. Biophys. Acta 682, 446–451. 10.1016/0005-2728(82)90059-7 CASWeb of Science®Google Scholar Ohno, K., Y. Takeuchi and M. Yoshida (1981) On the two forms of intermediate M of bacteriorhodopsin. Photochem. Photobiol. 33, 573–578. 10.1111/j.1751-1097.1981.tb05461.x CASWeb of Science®Google Scholar Oseroff, A. R. and R. H. Callender (1974) Resonance Raman spectroscopy of rhodopsin in retinal disk membranes. Biochemistry 13, 4243–4248. 10.1021/bi00717a027 CASPubMedWeb of Science®Google Scholar Ottolenghi, M. and M. Sheves (1989) Synthetic retinals as probes for the binding site and photoreactions in rhodopsins. J. Biol. Memb. In press. Google Scholar Ovchinnikov, Y. A. (1987) Structure of rhodopsin and bacteriorhodopsin. Photochem. Photobiol. 45, 909–914. 10.1111/j.1751-1097.1987.tb07902.x CASPubMedWeb of Science®Google Scholar Palings, I., E. M. M. van der Berg, J. Lugtenburg and R. A. Mathies (1989) Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorho-dopsin: Chromophore structure and energy storage in the primary photoproduct of vision. Biochemistry 28, 1498–1507. 10.1021/bi00430a012 CASPubMedWeb of Science®Google Scholar Palings, I., J. A. Pardoen, E. van den Berg, C. Winkel, J. Lugtenburg and R. A. Mathies (1987) Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: Implications for chromophore structure and environment. Biochemistry 26, 2544–2556. 10.1021/bi00383a021 CASPubMedWeb of Science®Google Scholar Pande, C., R. Callender, J. Baribeau, F. Boucher and A. Pande (1989a) Effect of lipid-protein interaction on the color of bacteriorhodopsin. Biochim. Biophvs. Acta 973, 257–262. 10.1016/S0005-2728(89)80430-X CASPubMedWeb of Science®Google Scholar Pande, C., R. H. Callender, C.-H, Chang and T. G. Ebrey (1986) Resonance Raman study of the pink membrane photochemically prepared from the deionized blue membrane o. H. halobium. Biophys. J. 50, 545–549. 10.1016/S0006-3495(86)83493-2 CASPubMedWeb of Science®Google Scholar Pande, A. J., R. H. Callender, T.G. Ebrey and M. Tsuda (1984) Resonance Raman study of the primary photochemistry of visual pigments: Hypsorhodopsin. Biophys. J. 45, 573–576. 10.1016/S0006-3495(84)84194-6 CASPubMedWeb of Science®Google Scholar Pande, C., R. Callender, R. Henderson and A. Pande (1989b) Purple membrane-color, crystallinity and the effect of DMSO. Biochemistry 28, 5971–5978. 10.1021/bi00440a038 CASPubMedWeb of Science®Google Scholar Pande, C., H. Deng, P. Rath, R. H. Callender and J. Schwemer (1987a) Resonance Raman spectroscopy of an ultraviolet-sensitive insect rhodopsin. Biochemistry 26, 7426–7430. 10.1021/bi00397a034 CASPubMedWeb of Science®Google Scholar Pande, C., J. K. Lanyi and R. H. Callender (1989c). Effects of anions on the Raman spectrum of halorhodopsin. Biophys. J. 55, 425–431. 10.1016/S0006-3495(89)82836-X CASPubMedWeb of Science®Google Scholar Pande, C., A. Pande, K. T. Yue, R. H. Callender, T. G. Ebrey and T. Tsuda (1987b) Resonance Raman spectroscopy of octopus rhodopsin and its photopro-ducts. Biochemistry 26, 4941–4947. 10.1021/bi00390a009 CASPubMedWeb of Science®Google Scholar Rafferty, C. N. and H. Shichi (1981) The involvement of water at the retinal binding site in rhodopsin and early light-induced intramolecular proton transfer. Photochem. Photobiol. 33, 229–234. 10.1111/j.1751-1097.1981.tb05329.x CASPubMedGoogle Scholar Rodman-Gilson, H. S., B. H. Honig, A. Croteau, G. Zarrill and K. Nakanishi (1988) Analysis of the factors that influence the C=N stretching frequency of poly-enens Schiff bases. Biophys. J. 53, 261–269. 10.1016/S0006-3495(88)83087-X PubMedWeb of Science®Google Scholar Roepe, P., P. L. Ahl, S. K. Das Gupta, J. Herzfeld and K. J. Rothschild (1987) Tyrosine protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550(i intermediates. Biochemistry 26, 6696–6707. 10.1021/bi00395a020 CASPubMedWeb of Science®Google Scholar Roepe, P. D., P. L. Ahl, J. Herzfeld, J. Lugtenburg and K. J. Rothschild (1988a) Tyrosine protonation changes in bacteriorhodopsin: a Fourier transform infrared study of BR548 and its primary photoproduct. J. Biol. Chem. 263, 5110–5117. CASPubMedWeb of Science®Google Scholar Roepe, P., D. Gray, J. Lugtenburg, E. M. M. van Den-Berg, J. Herzfeld and K. J. Rothschild (1988b) FTIR evidence for tryptophan perturbations during the bacteriorhodopsin photocycle. J. Am. Chem. Soc. 110, 7223–7224. 10.1021/ja00229a052 CASWeb of Science®Google Scholar Rothschild, K. J. (1988) Infrared studies of bacteriorhodopsin. Photochem. Photobiol. 47, 883–887. 10.1111/j.1751-1097.1988.tb01671.x CASWeb of Science®Google Scholar Rothschild, K. J., P. V. Argade, T. N. Earnest, K. S. Huang, E. London, M. -J. Liao, H. Bayley and H. G. Khorana (1982) The site for attachment of retinal in bacteriorhodopsin: a resonance Raman study. J. Biol. Chem. 257, 8592–8595. CASPubMedWeb of Science®Google Scholar Rothschild, K. J., M. Bousche, M. S. Braiman, C. A. Hasselbacher and J. L. Spudich (1988) Fourier transform infrared study of the halorhodopsin chloride pump. Biochemistry 27, 2420–2424. 10.1021/bi00407a026 CASPubMedWeb of Science®Google Scholar Rothschild, K. J., J. Gillespie and W. J. DeGrip (1987) Evidence for rhodopsin refolding during the decay of metall. Biophys. J. 51 345–350. 10.1016/S0006-3495(87)83341-6 CASPubMedWeb of Science®Google Scholar Rothschild, K. J., D. Gray, T. Mogi, T. Marti, M. S. Braiman, L. J. Stern and H. G. Khorana (1989) Vibrational spectroscopy of bacteriorhodopsin mutants: Chromophore isomerization perturbstryptophan–86. Biochemistry. 28, 7052–7059. 10.1021/bi00443a041 CASPubMedWeb of Science®Google Scholar Rothschild, K. J., P. Roepe, P. L. Ahl, T. N. Earnest, R. A. Bogomolni, S. K. Das Gupta, C. M. Mulliken and J. Herzfeld (1986) Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature. Proc. Natl. Acad. Sci. U.S.A. 83, 347–351. 10.1073/pnas.83.2.347 CASPubMedWeb of Science®Google Scholar Rothschild, K. J., P. Roepe and J. Gillespie (1985) Fourier transform infrared spectroscopic evidence for the existence of two conformations of the bacteriorhodopsin primary photoproduct at low temperature. Biochim. Biophys. Acta 808, 140–148. 10.1016/0005-2728(85)90036-2 CASPubMedWeb of Science®Google Scholar Rothschild, K. J., P. Roepe, J. Lugtenburg and J. Pardoen (1984) Fourier transform infrared evidence for Schiff base alteration in the first step of the bacteriorhodopsin photocycle. Biochemistry 23, 6103–6109. 10.1021/bi00320a031 CASPubMedWeb of Science®Google Scholar Saito, S. and M. Tasumi (1983) Normal-coordinate analysis of retinal isomers and assignments of Raman and infrared bands. J. Raman Spectrosc. 14, 236–245. 10.1002/jrs.1250140405 CASWeb of Science®Google Scholar Scherrer, P., M. K. Mathew, W. Sperling and W. Stoeck-enius (1989) The retinal isomer ratio in dark-adapted purple membrane and bacteriorhodopsin monomers. Biochemistry, 28, 829–834. 10.1021/bi00428a063 CASPubMedWeb of Science®Google Scholar Scherrer, P. and W. Stoeckenius (1985) Effects of tyros-ine-26 andtyrosine–64 nitration on the photoreactions of bacteriorhodopsin. Biochemistry 24, 7733–7740. 10.1021/bi00347a035 CASPubMedWeb of Science®Google Scholar Schiffmiller, R., R. H. Callender, W. H. Waddell, R. Govindjee, T. G. Ebrey, H. Kakitani, B. Honig and K. Nakanishi (1985) Resonance Raman studies of bacteriorhodopsin analogues. Photochem. Photobiol. 41, 563–567. 855. 10.1111/j.1751-1097.1985.tb03527.x CASPubMedWeb of Science®Google Scholar Schneider, G., R. Diller and M. Stockburger (1989) Photochemical quantum yield of bacteriorhodopsin from resonance Raman scattering as a probe for photolysis. Chem. Phys. 131, 17–29. 10.1016/0301-0104(89)87078-8 CASWeb of Science®Google Scholar Shichida, Y., S. Matuoka, Y. Hidaka and T. Yoshizawa (1983) Absorption spectra of intermediates of bacteriorhodopsin measured by laser photolysis at room temperatures. Biochim. Biophys. Acta 723, 240–246. 10.1016/0005-2728(83)90123-8 CASWeb of Science®Google Scholar Siebert, F. and W. Mäntele (1983) Investigation of the primary photochemistry of bacteriorhodopsin by low temperature Fourier-transform infrared spectroscopy. Eur. J. Biochem. 130, 565–573. 10.1111/j.1432-1033.1983.tb07187.x CASPubMedWeb of Science®Google Scholar Siebert, F., W. Mäntele and K. Gerwert (1983) Fourier transform infrared spectroscopy applied to rhodopsin: The problem of the protonation state of the retinylidene Schiff base reinvestigated. Eur. J. Biochem. 136, 119–127. 10.1111/j.1432-1033.1983.tb07714.x CASPubMedWeb of Science®Google Scholar Siebert, F., W. Mäntele and W. Kreutz (1982) Evidence for the protonation of two internal caboxylic groups during the photocycle of bacteriorhodopsin. FEBS Lett. 141, 82–86. 10.1016/0014-5793(82)80021-5 CASWeb of Science®Google Scholar Smith, S. O., M. S. Braiman, A B. Myers, J. A. Par-doen, J. M. L. Courtin, C. Winkel, J. Lugtenburg and R. A. Mathies (1987a) Vibrational analysis of the all-trans-retina chromophore in light-adapted bacteriorho-dopsin. J. Am. Chem. Soc. 109, 3108–3125. 10.1021/ja00244a038 CASWeb of Science®Google Scholar Smith, S. O., I. Hornung, R. van der Steen, J. A. Par-doen, M. S. Braiman, J. Lugtenburg and R. A. Mathies (1986) Are C14-C15 single bond isomerization of the retinal chromophore involved in the proton pumping mechanism of bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 83, 967–971. 10.1073/pnas.83.4.967 CASPubMedWeb of Science®Google Scholar Smith, S. O., J. Lugtenburg and R. A. Mathies (1985a) Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. J. Memb. Biol. 85, 95–109. 10.1007/BF01871263 CASPubMedWeb of Science®Google Scholar Smith, S. O. and R. A. Mathies (1985b) Resonance Raman spectra of the acidified and deionized forms of bacteriorhodopsin. Biophys. J. 47, 251–254. 10.1016/S0006-3495(85)83899-6 CASPubMedWeb of Science®Google Scholar Smith, S. O., A. B. Myers, R. A. Mathies, J. A. Par-doen, C. Winkel, E. M. M. van den Berg and J. Lugtenburg (1985c). Vibrational analysis of the all-(ran.s retinal protonated Schiff base. Biophys. J. 47, 653–664. 10.1016/S0006-3495(85)83961-8 CASPubMedWeb of Science®Google Scholar Smith, S. O., M. J. Marvin, R. A. Bogomolni and R. A. Mathies (1984a) Structure of the retinal chromophore in the HR57S form of halorhodopsin. J. Biol. Chem. 259, 12326–12329. CASPubMedWeb of Science®Google Scholar Smith, S. O., A.B. Myers, J. A. Pardoen, C. Winkel, P. P. J. Mulder, J. Lugtenburg and R. A. Mathies (1984b) Determination of retinal Schiff base configuration in bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 81, 2055–2059. 10.1073/pnas.81.7.2055 CASPubMedWeb of Science®Google Scholar Smith, S. O., J. A. Pardoen, J. Lugtenburg and R. A. Mathies. (1987b) Vibrational analysis of the 13-cis-reti-nal chromophore in dark-adapted bacteriorhodopsin. J. Phys. Chem. 91, 804–819. 10.1021/j100288a011 CASPubMedWeb of Science®Google Scholar Smith, S. O., J. A. Pardoen, P. P. J. Mulder, B. Curry, J. Lugtenburg and R. A. Mathies (1983) Chromophore structure in bacteriorhodopsin's O640 photointermedi-ate. Biochemistry 22, 6141–6148. 10.1021/bi00295a016 CASWeb of Science®Google Scholar Spudich, J. L., D. A. McCain, K. Nakanishi, M. Okabe, N. Shimizu, H. Rodman, B. Honig, and R. A. Bogomolni (1986) Chromophore/protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin. Biophys. J. 49, 479–483. 10.1016/S0006-3495(86)83657-8 CASPubMedWeb of Science®Google Scholar Stockburger, M., T. Alshuth, D. Oesterhelt and W. Gaertner (1986) Resonance Raman spectroscopy of bacteriorhodopsin: structure and function. In Spectroscopy of Biological Systems (Edited by R. J. H. Clark and R. E. Hester) Vol. 13, pp. 483–535. Wiley, New York . Google Scholar Stoeckenius, W. and R. A. Bogomolni (1982) Bacteriorhodopsin and related pigments of halobacteria. Ann. Rev. Biochem. 52, 587–616. 10.1146/annurev.bi.51.070182.003103 CASWeb of Science®Google Scholar Sugihara, T. and T. Kitagawa (1986) Resonance Raman spectra of red-shifted retinal Schiff's base. Bull. Chem. Soc. Jpn 59, 2929–2931. 10.1246/bcsj.59.2929 Web of Science®Google Scholar Tittor, J., D. Oesterhelt, R. Maurer, H. Desel and R. Uhl (1987) The photochemical cycle of halorhodopsin: absolute spectra of intermediates obtained by flash photolysis and fast difference spectra measurements. Biophys. J. 52, 999–1006. 10.1016/S0006-3495(87)83292-7 CASPubMedWeb of Science®Google Scholar Tsuda, M. (1987) Photophysiological functions of visual pigments. Adv. Biophys. 17, 5–67. Google Scholar Yoshizaw, T. (1984) Photoreception and phototransduc-tion in invertebrate photoreceptors. Photochem. Photo-biol. 45, 915–931. Google Scholar Yoshizawa, T., Y. Shichida and S. Matuoka (1984) Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Vision Res. 24, 1455–1463. 10.1016/0042-6989(84)90306-7 CASPubMedWeb of Science®Google Scholar Citing Literature Volume50, Issue6December 1989Pages 883-894 ReferencesRelatedInformation