Qualitative identification of tea categories by near infrared spectroscopy and support vector machine

支持向量机 模式识别(心理学) 主成分分析 人工智能 化学 分类器(UML) 人工神经网络 径向基函数 鉴定(生物学) 红茶 定性分析 生物系统 计算机科学 植物 食品科学 生物 定性研究 社会科学 社会学
作者
Jiewen Zhao,Quansheng Chen,Xingyi Huang,Chao Fang
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:41 (4): 1198-1204 被引量:108
标识
DOI:10.1016/j.jpba.2006.02.053
摘要

Near-infrared (NIR) spectroscopy has been successfully utilized for the rapid identification of green, black and Oolong tea. The spectral features of each tea category are reasonably differentiated in the NIR region, and the spectral differences provided enough qualitative spectral information for the identification of tea. Support vector machine (SVM) as the pattern recognition was applied to identify three tea categories in this study. The top five principal components (PCs) were extracted as the input of SVM classifiers by principal component analysis (PCA). The RBF SVM classifiers and the polynomial SVM classifiers were studied comparatively in this experiment. The best experimental results were obtained using the radial basis function (RBF) SVM classifier with σ = 0.5. The accuracies of identification were all more than 90% for three tea categories. Finally, compared with the back propagation artificial neural network (BP-ANN) approach, SVM algorithm showed its excellent generalization for identification results. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and simple identification of the tea categories.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒸馏水发布了新的文献求助10
刚刚
刚刚
1秒前
李不乐完成签到,获得积分10
1秒前
kaiyuannnnnn完成签到,获得积分10
1秒前
zhou发布了新的文献求助10
1秒前
聪明海豚发布了新的文献求助10
2秒前
liwei发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
niko发布了新的文献求助30
2秒前
deng发布了新的文献求助30
2秒前
LIYI发布了新的文献求助10
3秒前
秦艽完成签到,获得积分10
3秒前
李ny完成签到,获得积分20
4秒前
4秒前
Lucas应助8y24dp采纳,获得10
4秒前
111发布了新的文献求助10
5秒前
yqsf789发布了新的文献求助10
5秒前
Sandra完成签到 ,获得积分10
5秒前
可爱的函函应助西蜀小吏采纳,获得10
5秒前
二战老兵完成签到,获得积分10
5秒前
lllly发布了新的文献求助10
7秒前
John不想上班完成签到 ,获得积分10
7秒前
gaohui完成签到,获得积分10
7秒前
bionova发布了新的文献求助10
8秒前
小冰糖完成签到 ,获得积分10
8秒前
8秒前
灬卍冉发布了新的文献求助10
8秒前
FXY发布了新的文献求助10
9秒前
9秒前
9秒前
111完成签到,获得积分10
10秒前
123完成签到,获得积分10
10秒前
bioinfo_sc完成签到,获得积分10
11秒前
11秒前
桐桐应助zxdnbb采纳,获得10
11秒前
liwei完成签到,获得积分10
12秒前
顾矜应助爱格儿采纳,获得10
12秒前
研友_LmVygn发布了新的文献求助10
13秒前
oo完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123