溶解有机碳
土壤水分
泥炭
环境科学
生态系统
环境化学
总有机碳
浸出(土壤学)
土壤碳
土壤酸化
土壤pH值
化学
土壤科学
生态学
生物
作者
C. D. Evans,Tim G. Jones,Annette Burden,Nick Ostle,Piotr Zieliński,Mark D. A. Cooper,Mike Peacock,Joanna M. Clark,Filip Oulehle,David Cooper,Chris Freeman
标识
DOI:10.1111/j.1365-2486.2012.02794.x
摘要
Abstract Dissolved organic carbon ( DOC ) concentrations in surface waters have increased across much of E urope and N orth A merica, with implications for the terrestrial carbon balance, aquatic ecosystem functioning, water treatment costs and human health. Over the past decade, many hypotheses have been put forward to explain this phenomenon, from changing climate and land management to eutrophication and acid deposition. Resolution of this debate has been hindered by a reliance on correlative analyses of time series data, and a lack of robust experimental testing of proposed mechanisms. In a 4 year, four‐site replicated field experiment involving both acidifying and deacidifying treatments, we tested the hypothesis that DOC leaching was previously suppressed by high levels of soil acidity in peat and organo‐mineral soils, and therefore that observed DOC increases a consequence of decreasing soil acidity. We observed a consistent, positive relationship between DOC and acidity change at all sites. Responses were described by similar hyperbolic relationships between standardized changes in DOC and hydrogen ion concentrations at all sites, suggesting potentially general applicability. These relationships explained a substantial proportion of observed changes in peak DOC concentrations in nearby monitoring streams, and application to a UK ‐wide upland soil p H dataset suggests that recovery from acidification alone could have led to soil solution DOC increases in the range 46–126% by habitat type since 1978. Our findings raise the possibility that changing soil acidity may have wider impacts on ecosystem carbon balances. Decreasing sulphur deposition may be accelerating terrestrial carbon loss, and returning surface waters to a natural, high‐ DOC condition.
科研通智能强力驱动
Strongly Powered by AbleSci AI