Mathematical modelling and a meta-heuristic for flexible job shop scheduling

启发式 水准点(测量) 整数规划 模拟退火 调度(生产过程) 作业车间调度 计算机科学 启发式 数学优化 算法 数学 地铁列车时刻表 地理 操作系统 大地测量学
作者
Vahid Roshanaei,Ahmed Azab,Hoda ElMaraghy
出处
期刊:International Journal of Production Research [Informa]
卷期号:51 (20): 6247-6274 被引量:66
标识
DOI:10.1080/00207543.2013.827806
摘要

AbstractThis study develops new solution methodologies for the flexible job shop scheduling problem (F-JSSP). As a first step towards dealing with this complex problem, mathematical modellings have been used; two novel effective position- and sequence-based mixed integer linear programming (MILP) models have been developed to fully characterise operations of the shop floor. The developed MILP models are capable of solving both partially and totally F-JSSPs. Size complexities, solution effectiveness and computational efficiencies of the developed MILPs are numerically explored and comprehensively compared vis-à-vis the makespan optimisation criterion. The acquired results demonstrate that the proposed MILPs, by virtue of its structural efficiencies, outperform the state-of-the-art MILPs in literature. The F-JSSP is strongly NP-hard; hence, it renders even the developed enhanced MILPs inefficient in generating schedules with the desired quality for industrial scale problems. Thus, a meta-heuristic that is a hybrid of Artificial Immune and Simulated Annealing (AISA) Algorithms has been proposed and developed for larger instances of the F-JSSP. Optimality gap is measured through comparison of AISA’s suboptimal solutions with its MILP exact optimal counterparts obtained for small- to medium-size benchmarks of F-JSSP. The AISA’s results were examined further by comparing them with seven of the best-performing meta-heuristics applied to the same benchmark. The performed comparative analysis demonstrated the superiority of the developed AISA algorithm. An industrial problem in a mould- and die-making shop was used for verification.Keywords: schedulingflexible job shopmixed integer linear programminghybrid artificial immune algorithmssimulated annealingsize complexityoptimality gap AcknowledgementsThis research was conducted in the Intelligent Manufacturing Systems Center at the University of Windsor, Canada. Research funding from the Canada Research Chairs program and the Natural Sciences and Engineering Council (NSERC) of Canada are gratefully acknowledged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆思柔完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
脑洞疼应助Xu采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
Dddd发布了新的文献求助10
3秒前
xx完成签到,获得积分20
3秒前
BEIBEI完成签到,获得积分10
3秒前
liyi发布了新的文献求助10
3秒前
苗条的山晴完成签到,获得积分10
3秒前
4秒前
mm完成签到,获得积分10
5秒前
JUll发布了新的文献求助10
5秒前
无奈抽屉完成签到 ,获得积分10
5秒前
5秒前
6秒前
风中的夏兰完成签到,获得积分10
6秒前
czt完成签到,获得积分10
6秒前
研友_nPPERn发布了新的文献求助10
6秒前
7秒前
温柔若发布了新的文献求助10
7秒前
ry发布了新的文献求助10
7秒前
gms发布了新的文献求助10
7秒前
Owen应助judy采纳,获得30
7秒前
Zifflie完成签到,获得积分10
7秒前
8秒前
8秒前
xuanxuan发布了新的文献求助10
8秒前
keigo发布了新的文献求助10
8秒前
xqwwqx发布了新的文献求助10
8秒前
fay完成签到,获得积分10
9秒前
毛儿豆儿完成签到,获得积分10
9秒前
马铃薯发布了新的文献求助10
9秒前
帅玉玉发布了新的文献求助10
9秒前
MADKAI发布了新的文献求助10
9秒前
老詹头完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678