锂(药物)
材料科学
磷酸铁锂
磷酸钒锂电池
电化学
磷酸铁
阴极
化学工程
阳极
无机化学
电极
磷酸盐
化学
医学
有机化学
物理化学
工程类
内分泌学
作者
Gaojun Wang,Linfeng Chen,G. N. Mathur,Vijay K. Varadan
摘要
Olivine-structured lithium iron phosphates are promising cathode materials in the development of high power lithium ion batteries for electric vehicles. However, the low electronic conductivity and ionic conductivity of lithium iron phosphates hinder their commercialization pace. This work aims to verify the approaches for improving the electrochemical properties of lithium iron phosphates. In this work, sol-gel method was used to synthesize carbon coated lithium iron phosphates and nickel doped lithium iron phosphates, and their particle sizes were controlled in the nanometer to sub-micrometer range. The crystalline structures of the synthesized lithium iron phosphates were characterized by X-ray diffraction, and their morphologies were analyzed by scanning electron microscopy. To study their electrochemical properties, prototype lithium ion batteries were assembled with the synthesized lithium iron phosphates as cathode active materials, and with lithium metal discs as the anodes, and the discharge / charge properties and cycling behaviors of the prototype batteries were tested at different rates. The synthesized lithium iron phosphate materials exhibited high capacity and high cycling stability. It was confirmed that particle size reduction, carbon coating and metal doping are three effective approaches for increasing the conductivity of lithium iron phosphates, and thus improving their electrochemical properties. Experimental results show that by combing the three approaches for improving the electrochemical properties, lithium iron phosphate composites with characteristics favorable for their applications in lithium ion batteries for electric vehicles can be developed, including high specific capacity, high rate capacity, flat discharge voltage plateau and high retention ratio.
科研通智能强力驱动
Strongly Powered by AbleSci AI