亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Opinion Mining and Sentiment Analysis

情绪分析 自动汇总 人气 数据科学 计算机科学 分类 水准点(测量) 光学(聚焦) 政治学 情报检索 人工智能 地理 物理 大地测量学 光学 法学
作者
Bo Pang,Lillian Lee
标识
DOI:10.1561/9781601981516
摘要

An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people can, and do, actively use information technologies to seek out and understand the opinions of others. The sudden eruption of activity in the area of opinion mining and sentiment analysis, which deals with the computational treatment of opinion, sentiment, and subjectivity in text, has thus occurred at least in part as a direct response to the surge of interest in new systems that deal directly with opinions as a first-class object. Opinion Mining and Sentiment Analysis covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems. The focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis. The survey includes an enumeration of the various applications, a look at general challenges and discusses categorization, extraction and summarization. Finally, it moves beyond just the technical issues, devoting significant attention to the broader implications that the development of opinion-oriented information-access services have: questions of privacy, vulnerability to manipulation, and whether or not reviews can have measurable economic impact. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided. Opinion Mining and Sentiment Analysis is the first such comprehensive survey of this vibrant and important research area and will be of interest to anyone with an interest in opinion-oriented information-seeking systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
kuoping完成签到,获得积分10
24秒前
26秒前
晚来天欲雪完成签到 ,获得积分10
32秒前
研友_X894JZ完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Loneranger发布了新的文献求助10
1分钟前
wyg1994完成签到,获得积分10
1分钟前
Loneranger完成签到,获得积分20
1分钟前
1分钟前
ding应助wbs13521采纳,获得10
2分钟前
jump完成签到,获得积分10
2分钟前
2分钟前
2分钟前
wbs13521发布了新的文献求助10
2分钟前
羫孔发布了新的文献求助10
3分钟前
科研通AI2S应助羫孔采纳,获得10
3分钟前
彭于晏应助哈密瓜采纳,获得50
4分钟前
4分钟前
鲁成危完成签到,获得积分10
4分钟前
4分钟前
5分钟前
哈密瓜发布了新的文献求助50
5分钟前
田様应助哈密瓜采纳,获得50
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
段誉完成签到 ,获得积分10
6分钟前
6分钟前
科研搬运工完成签到,获得积分10
6分钟前
7分钟前
小小完成签到 ,获得积分10
7分钟前
科研通AI2S应助体贴花卷采纳,获得10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助xfcy采纳,获得10
8分钟前
jarenthar完成签到 ,获得积分10
9分钟前
留下记忆完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314398
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531229
捐赠科研通 2622376
什么是DOI,文献DOI怎么找? 1434493
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881