共聚物
高分子化学
马来酸
材料科学
过硫酸铵
丙烯酸
单体
丙烯酸酯
高效减水剂
聚乙二醇
化学
有机化学
聚合物
复合材料
抗压强度
作者
LU Sheng-hua,Gang Liu,Yan Ma,Fang Li
摘要
Abstract A new vinyl graft copolymer superplasticizer was synthesized by copolymerization of polyethylene glycol acrylate (PEGAA), polyethylene glycol biester of maleic acid and citric acid (PEGMC), acrylic acid (AA), sodium allylsulphonate (SAS), and methyl acrylate (MA). The effects of the vinyl monomers' molar ratio, initiator, reaction temperature, and reaction time on its application properties were investigated. The results show that the new vinyl graft copolymer superplasticizer has excellent application properties when the molar ratio of PEGAA, PEGMC, AA, SAS, and MA is 0.5 : 0.10 : 0.20 : 0.05 : 0.03 and the initiator ammonium persulfate [(NH 4 ) 2 S 2 O 8 , APS] is 0.8 wt % at 80°C for 3 h. The vinyl monomers' conversion is 98.7%. The applied results show that the water‐reducing ratio and retardation solidification time of the superplasticizer reach 33.5% and 4 h, respectively. The applied concrete has excellent mechanical properties. Its molecular structure was characterized by nuclear magnetic resonance, Fourier transform infrared spectra, and gel permeation chromatography. It is characteristic of the new vinyl graft copolymer superplasticizer that citric acid (CA) and MA are introduced into the copolymer molecules. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
科研通智能强力驱动
Strongly Powered by AbleSci AI