清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Shape-Controlled Synthesis of Copper Nanocrystals for Plasmonic, Biomedical, and Electrocatalytic Applications

纳米晶 等离子体子 材料科学 纳米技术 纳米颗粒 氧化铟锡 纳米线 表面等离子共振 纳米材料基催化剂 制作 钝化 光电子学 冶金 薄膜 图层(电子) 医学 替代医学 病理
作者
Zhiheng Lyu,Yuxin Shang,Younan Xia
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:3 (11): 1137-1148 被引量:13
标识
DOI:10.1021/accountsmr.2c00134
摘要

ConspectusAs a metal that can occur in nature in the elemental form, copper (Cu) has been used by humans since ca. 8000 BC. With most properties matching those of Ag and Au, Cu has played a more significant role in commercial applications owing to its much higher (the 25th among all elements) abundance in Earth's crust and thus more affordable price. In addition to its common use as a conductor of heat and electricity, it is a constituent of various metal alloys for hardware, coins, strain gauges, and thermocouples. Bulk Cu is also widely utilized as a building material. When downsized to the nanoscale, Cu and Cu-based structures have found widespread use in applications ranging from electronics to optoelectronics, plasmonics, catalysis, sensing, and biomedicine. Besides Ag and Au, for example, Cu is another metal known for its localized surface plasmon resonance (LSPR) in the visible and near-infrared regions when prepared as nanocrystals. As a potential replacement for indium–tin oxide (ITO) films, polymer coatings containing Cu nanowires are strong candidates for the fabrication of transparent and flexible electrodes key to touchscreen display and related applications. The commercial catalysts for water–gas shift and gas detoxification reactions are also based on Cu nanoparticles. Most recently, Cu nanocrystals have attracted considerable interest for their superior selectivity toward hydrocarbons and multicarbon species during the electrochemical reduction of CO2. The success of all these applications critically depends on our ability to control the shape and surface structure of the nanocrystals. Relative to Ag and Au, it is more challenging to generate Cu-based nanocrystals using colloidal methods due to its lower reduction potential and greater vulnerability to oxidation.In this Account, we discuss recent progress in the colloidal synthesis of Cu nanocrystals with controlled shapes for plasmonic, biomedical, and catalytic applications. With glucose serving as a reducing agent, Cu nanocrystals bearing a twinned or single-crystal structure can be synthesized using an aqueous system with the assistance of hexadecylamine (HDA). In this synthetic protocol, HDA not only passivates the surface to protect the nanocrystals from oxidation but also manipulates the reduction kinetics of Cu(II) precursor through coordination and an increase of solution pH. Typical products include nanocubes and penta-twinned nanowires whose surfaces are dominated by {100} facets. When seeds produced either in situ or ex situ are introduced, Cu-based nanocrystals featuring a singly twinned, core–shell, or Janus structure can be readily synthesized. Aside from segmented structures, Cu-based alloys with various noble metals can be synthesized through coreduction or a galvanic replacement reaction with preformed Cu nanocrystals. By controlling the size and/or shape of Cu nanocrystals, their LSPR peaks can be tuned into the near-infrared region, making them promising candidates for optical imaging contrast enhancement and photothermal treatment. The inclusion of the 64Cu isotope makes them immediately useful in positron emission tomography and thus image-guided therapy. The surface structure, elemental distribution, and valence state of Cu-based nanocrystals can all be tailored to augment their electrocatalytic performance. It is hoped that this Account will inspire more studies into the development of rational methods capable of producing Cu-based nanocrystals with diverse and well-controlled shapes, internal structures, and compositions for a broader range of applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉汝于成完成签到 ,获得积分10
4秒前
jixuchance发布了新的文献求助10
4秒前
tyl完成签到 ,获得积分10
4秒前
高高的丹雪完成签到 ,获得积分10
7秒前
jixuchance完成签到,获得积分10
14秒前
摩天轮完成签到 ,获得积分10
26秒前
最美夕阳红完成签到,获得积分10
38秒前
谨慎蓉蓉完成签到 ,获得积分10
41秒前
窦慕卉完成签到,获得积分10
1分钟前
dent强完成签到 ,获得积分10
1分钟前
整齐的惮完成签到 ,获得积分10
1分钟前
冷冷完成签到 ,获得积分10
1分钟前
ewind完成签到 ,获得积分10
1分钟前
JL完成签到 ,获得积分10
1分钟前
大大蕾完成签到 ,获得积分10
1分钟前
陈昇完成签到 ,获得积分10
1分钟前
胡图图完成签到 ,获得积分10
1分钟前
青羽落霞完成签到 ,获得积分10
1分钟前
包子完成签到,获得积分10
2分钟前
秋夏完成签到,获得积分10
2分钟前
zhang完成签到 ,获得积分10
2分钟前
潘fujun完成签到 ,获得积分10
2分钟前
远山完成签到 ,获得积分10
3分钟前
哈哈发布了新的文献求助10
3分钟前
大生蚝完成签到 ,获得积分10
3分钟前
遂安完成签到,获得积分10
3分钟前
孤独的涵柳完成签到 ,获得积分10
3分钟前
whuhustwit完成签到,获得积分10
3分钟前
臨水照花人完成签到 ,获得积分10
3分钟前
Shandongdaxiu完成签到 ,获得积分10
3分钟前
xixi很困完成签到 ,获得积分10
3分钟前
鲸鱼完成签到 ,获得积分10
3分钟前
赧赧完成签到 ,获得积分10
3分钟前
wx1完成签到 ,获得积分0
4分钟前
ee_Liu完成签到,获得积分10
4分钟前
葫芦芦芦完成签到 ,获得积分10
4分钟前
俊逸的白梦完成签到 ,获得积分10
4分钟前
任性星星完成签到 ,获得积分10
4分钟前
珂珂完成签到 ,获得积分10
4分钟前
SI完成签到 ,获得积分10
4分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167235
求助须知:如何正确求助?哪些是违规求助? 2818702
关于积分的说明 7921913
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443