Shape-Controlled Synthesis of Copper Nanocrystals for Plasmonic, Biomedical, and Electrocatalytic Applications

纳米晶 等离子体子 材料科学 纳米技术 纳米颗粒 氧化铟锡 纳米线 表面等离子共振 纳米材料基催化剂 制作 光电子学 化学工程 冶金 薄膜 工程类 病理 医学 替代医学
作者
Zhiheng Lyu,Yuxin Shang,Younan Xia
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:3 (11): 1137-1148 被引量:25
标识
DOI:10.1021/accountsmr.2c00134
摘要

ConspectusAs a metal that can occur in nature in the elemental form, copper (Cu) has been used by humans since ca. 8000 BC. With most properties matching those of Ag and Au, Cu has played a more significant role in commercial applications owing to its much higher (the 25th among all elements) abundance in Earth's crust and thus more affordable price. In addition to its common use as a conductor of heat and electricity, it is a constituent of various metal alloys for hardware, coins, strain gauges, and thermocouples. Bulk Cu is also widely utilized as a building material. When downsized to the nanoscale, Cu and Cu-based structures have found widespread use in applications ranging from electronics to optoelectronics, plasmonics, catalysis, sensing, and biomedicine. Besides Ag and Au, for example, Cu is another metal known for its localized surface plasmon resonance (LSPR) in the visible and near-infrared regions when prepared as nanocrystals. As a potential replacement for indium–tin oxide (ITO) films, polymer coatings containing Cu nanowires are strong candidates for the fabrication of transparent and flexible electrodes key to touchscreen display and related applications. The commercial catalysts for water–gas shift and gas detoxification reactions are also based on Cu nanoparticles. Most recently, Cu nanocrystals have attracted considerable interest for their superior selectivity toward hydrocarbons and multicarbon species during the electrochemical reduction of CO2. The success of all these applications critically depends on our ability to control the shape and surface structure of the nanocrystals. Relative to Ag and Au, it is more challenging to generate Cu-based nanocrystals using colloidal methods due to its lower reduction potential and greater vulnerability to oxidation.In this Account, we discuss recent progress in the colloidal synthesis of Cu nanocrystals with controlled shapes for plasmonic, biomedical, and catalytic applications. With glucose serving as a reducing agent, Cu nanocrystals bearing a twinned or single-crystal structure can be synthesized using an aqueous system with the assistance of hexadecylamine (HDA). In this synthetic protocol, HDA not only passivates the surface to protect the nanocrystals from oxidation but also manipulates the reduction kinetics of Cu(II) precursor through coordination and an increase of solution pH. Typical products include nanocubes and penta-twinned nanowires whose surfaces are dominated by {100} facets. When seeds produced either in situ or ex situ are introduced, Cu-based nanocrystals featuring a singly twinned, core–shell, or Janus structure can be readily synthesized. Aside from segmented structures, Cu-based alloys with various noble metals can be synthesized through coreduction or a galvanic replacement reaction with preformed Cu nanocrystals. By controlling the size and/or shape of Cu nanocrystals, their LSPR peaks can be tuned into the near-infrared region, making them promising candidates for optical imaging contrast enhancement and photothermal treatment. The inclusion of the 64Cu isotope makes them immediately useful in positron emission tomography and thus image-guided therapy. The surface structure, elemental distribution, and valence state of Cu-based nanocrystals can all be tailored to augment their electrocatalytic performance. It is hoped that this Account will inspire more studies into the development of rational methods capable of producing Cu-based nanocrystals with diverse and well-controlled shapes, internal structures, and compositions for a broader range of applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴汽车发布了新的文献求助10
2秒前
JxJ完成签到,获得积分10
2秒前
鹏程完成签到 ,获得积分10
3秒前
3秒前
Active发布了新的文献求助10
5秒前
YamDaamCaa应助Captain_H采纳,获得30
7秒前
今后应助mzone采纳,获得10
7秒前
Gauze完成签到,获得积分10
8秒前
lklklk发布了新的文献求助10
8秒前
YX关注了科研通微信公众号
9秒前
SciGPT应助如意2023采纳,获得10
10秒前
grey完成签到,获得积分10
10秒前
谨慎鞅完成签到,获得积分10
12秒前
15秒前
lqy完成签到,获得积分10
16秒前
丘比特应助阔达靖琪采纳,获得10
17秒前
mzone发布了新的文献求助10
20秒前
20秒前
shisui应助三哥采纳,获得30
20秒前
Captain_H完成签到,获得积分20
21秒前
22秒前
如意2023发布了新的文献求助10
23秒前
yyyalles应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
24秒前
yyyalles应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
柒啊柒la发布了新的文献求助10
25秒前
可爱的函函应助比巴卜采纳,获得10
26秒前
26秒前
小聖完成签到 ,获得积分10
26秒前
直率夜阑发布了新的文献求助10
27秒前
小小小小完成签到,获得积分20
27秒前
赘婿应助lvlv采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512526
关于积分的说明 11163850
捐赠科研通 3247430
什么是DOI,文献DOI怎么找? 1793831
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804494