摘要
ConspectusAs a metal that can occur in nature in the elemental form, copper (Cu) has been used by humans since ca. 8000 BC. With most properties matching those of Ag and Au, Cu has played a more significant role in commercial applications owing to its much higher (the 25th among all elements) abundance in Earth's crust and thus more affordable price. In addition to its common use as a conductor of heat and electricity, it is a constituent of various metal alloys for hardware, coins, strain gauges, and thermocouples. Bulk Cu is also widely utilized as a building material. When downsized to the nanoscale, Cu and Cu-based structures have found widespread use in applications ranging from electronics to optoelectronics, plasmonics, catalysis, sensing, and biomedicine. Besides Ag and Au, for example, Cu is another metal known for its localized surface plasmon resonance (LSPR) in the visible and near-infrared regions when prepared as nanocrystals. As a potential replacement for indium–tin oxide (ITO) films, polymer coatings containing Cu nanowires are strong candidates for the fabrication of transparent and flexible electrodes key to touchscreen display and related applications. The commercial catalysts for water–gas shift and gas detoxification reactions are also based on Cu nanoparticles. Most recently, Cu nanocrystals have attracted considerable interest for their superior selectivity toward hydrocarbons and multicarbon species during the electrochemical reduction of CO2. The success of all these applications critically depends on our ability to control the shape and surface structure of the nanocrystals. Relative to Ag and Au, it is more challenging to generate Cu-based nanocrystals using colloidal methods due to its lower reduction potential and greater vulnerability to oxidation.In this Account, we discuss recent progress in the colloidal synthesis of Cu nanocrystals with controlled shapes for plasmonic, biomedical, and catalytic applications. With glucose serving as a reducing agent, Cu nanocrystals bearing a twinned or single-crystal structure can be synthesized using an aqueous system with the assistance of hexadecylamine (HDA). In this synthetic protocol, HDA not only passivates the surface to protect the nanocrystals from oxidation but also manipulates the reduction kinetics of Cu(II) precursor through coordination and an increase of solution pH. Typical products include nanocubes and penta-twinned nanowires whose surfaces are dominated by {100} facets. When seeds produced either in situ or ex situ are introduced, Cu-based nanocrystals featuring a singly twinned, core–shell, or Janus structure can be readily synthesized. Aside from segmented structures, Cu-based alloys with various noble metals can be synthesized through coreduction or a galvanic replacement reaction with preformed Cu nanocrystals. By controlling the size and/or shape of Cu nanocrystals, their LSPR peaks can be tuned into the near-infrared region, making them promising candidates for optical imaging contrast enhancement and photothermal treatment. The inclusion of the 64Cu isotope makes them immediately useful in positron emission tomography and thus image-guided therapy. The surface structure, elemental distribution, and valence state of Cu-based nanocrystals can all be tailored to augment their electrocatalytic performance. It is hoped that this Account will inspire more studies into the development of rational methods capable of producing Cu-based nanocrystals with diverse and well-controlled shapes, internal structures, and compositions for a broader range of applications.