Shape-Controlled Synthesis of Copper Nanocrystals for Plasmonic, Biomedical, and Electrocatalytic Applications

纳米晶 等离子体子 材料科学 纳米技术 纳米颗粒 氧化铟锡 纳米线 表面等离子共振 纳米材料基催化剂 制作 光电子学 化学工程 冶金 薄膜 工程类 病理 医学 替代医学
作者
Zhiheng Lyu,Yuxin Shang,Younan Xia
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:3 (11): 1137-1148 被引量:39
标识
DOI:10.1021/accountsmr.2c00134
摘要

As a metal that can occur in nature in the elemental form, copper (Cu) has been used by humans since ca. 8000 BC. With most properties matching those of Ag and Au, Cu has played a more significant role in commercial applications owing to its much higher (the 25th among all elements) abundance in Earth’s crust and thus more affordable price. In addition to its common use as a conductor of heat and electricity, it is a constituent of various metal alloys for hardware, coins, strain gauges, and thermocouples. Bulk Cu is also widely utilized as a building material. When downsized to the nanoscale, Cu and Cu-based structures have found widespread use in applications ranging from electronics to optoelectronics, plasmonics, catalysis, sensing, and biomedicine. Besides Ag and Au, for example, Cu is another metal known for its localized surface plasmon resonance (LSPR) in the visible and near-infrared regions when prepared as nanocrystals. As a potential replacement for indium–tin oxide (ITO) films, polymer coatings containing Cu nanowires are strong candidates for the fabrication of transparent and flexible electrodes key to touchscreen display and related applications. The commercial catalysts for water–gas shift and gas detoxification reactions are also based on Cu nanoparticles. Most recently, Cu nanocrystals have attracted considerable interest for their superior selectivity toward hydrocarbons and multicarbon species during the electrochemical reduction of CO<sub>2</sub>. The success of all these applications critically depends on our ability to control the shape and surface structure of the nanocrystals. Relative to Ag and Au, it is more challenging to generate Cu-based nanocrystals using colloidal methods due to its lower reduction potential and greater vulnerability to oxidation. Here, in this account, we discuss recent progress in the colloidal synthesis of Cu nanocrystals with controlled shapes for plasmonic, biomedical, and catalytic applications. With glucose serving as a reducing agent, Cu nanocrystals bearing a twinned or single-crystal structure can be synthesized using an aqueous system with the assistance of hexadecylamine (HDA). In this synthetic protocol, HDA not only passivates the surface to protect the nanocrystals from oxidation but also manipulates the reduction kinetics of Cu(II) precursor through coordination and an increase of solution pH. Typical products include nanocubes and penta-twinned nanowires whose surfaces are dominated by {100} facets. When seeds produced either in situ or ex situ are introduced, Cu-based nanocrystals featuring a singly twinned, core–shell, or Janus structure can be readily synthesized. Aside from segmented structures, Cu-based alloys with various noble metals can be synthesized through coreduction or a galvanic replacement reaction with preformed Cu nanocrystals. By controlling the size and/or shape of Cu nanocrystals, their LSPR peaks can be tuned into the near-infrared region, making them promising candidates for optical imaging contrast enhancement and photothermal treatment. The inclusion of the <sup>64</sup>Cu isotope makes them immediately useful in positron emission tomography and thus image-guided therapy. The surface structure, elemental distribution, and valence state of Cu-based nanocrystals can all be tailored to augment their electrocatalytic performance. It is hoped that this Account will inspire more studies into the development of rational methods capable of producing Cu-based nanocrystals with diverse and well-controlled shapes, internal structures, and compositions for a broader range of applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Famous小人物采纳,获得10
刚刚
哇哈哈哈哈哈应助Maestro_S采纳,获得50
1秒前
憨憨发布了新的文献求助10
1秒前
耍酷的海秋完成签到 ,获得积分20
1秒前
lkl完成签到 ,获得积分10
2秒前
小坚果发布了新的文献求助10
2秒前
Hanoi347应助tiezhu采纳,获得10
2秒前
FashionBoy应助tiezhu采纳,获得10
2秒前
hh发布了新的文献求助10
3秒前
调皮钻石完成签到,获得积分10
3秒前
於傲松发布了新的文献求助10
3秒前
ruilong完成签到,获得积分10
4秒前
lllu完成签到,获得积分10
4秒前
4秒前
勤恳的一斩完成签到,获得积分10
4秒前
Dhh发布了新的文献求助10
5秒前
zhaosheng发布了新的文献求助10
5秒前
5秒前
5秒前
蛋蛋姐姐完成签到,获得积分10
5秒前
陆斑马完成签到,获得积分10
6秒前
han完成签到,获得积分10
6秒前
YM完成签到,获得积分10
6秒前
YH完成签到,获得积分10
6秒前
小金鱼儿完成签到,获得积分10
7秒前
7秒前
光之美少女完成签到 ,获得积分10
7秒前
朻安完成签到,获得积分10
7秒前
向往生活完成签到,获得积分10
7秒前
风中虔纹完成签到,获得积分10
8秒前
8秒前
奋斗的成协完成签到,获得积分10
9秒前
完美世界应助奋斗夏烟采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
从容从灵发布了新的文献求助10
10秒前
萄葡完成签到 ,获得积分10
10秒前
俏皮沂完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997