亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploiting More Information in Sparse Point Cloud for 3D Single Object Tracking

计算机科学 人工智能 点云 计算机视觉 编码器 对象(语法) 视频跟踪 相似性(几何) 跟踪(教育) 稀疏逼近 代表(政治) 模式识别(心理学) 图像(数学) 操作系统 政治 教育学 政治学 法学 心理学
作者
Yubo Cui,Jiayao Shan,Zuoxu Gu,Zhiheng Li,Zheng Fang
出处
期刊:IEEE robotics and automation letters 卷期号:7 (4): 11926-11933 被引量:6
标识
DOI:10.1109/lra.2022.3208687
摘要

3D single object tracking is a key task in 3D computer vision. However, the sparsity of point clouds makes it difficult to compute the similarity and locate the object, posing big challenges to the 3D tracker. Previous works tried to solve the problem and improved the tracking performance in some common scenarios, but they usually failed in some extreme sparse scenarios, such as for tracking objects at long distances or partially occluded. To address the above problems, in this letter, we propose a sparse-to-dense and transformer-based framework for 3D single object tracking. First, we transform the 3D sparse points into 3D pillars and then compress them into 2D bird's eye view (BEV) features to have a dense representation. Then, we propose an attention-based encoder to achieve global similarity computation between template and search branches, which could alleviate the influence of sparsity. Meanwhile, the encoder applies the attention on multi-scale features to compensate for the lack of information caused by the sparsity of point cloud and the single scale of features. Finally, we use set-prediction to track the object through a two-stage decoder which also utilizes attention. Extensive experiments show that our method achieves very promising results on the KITTI and NuScenes datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tlx发布了新的文献求助10
3秒前
xmg完成签到,获得积分20
7秒前
共享精神应助一周采纳,获得10
7秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
gexzygg应助科研通管家采纳,获得10
10秒前
shhoing应助科研通管家采纳,获得10
10秒前
10秒前
qpp完成签到,获得积分10
10秒前
beiwei完成签到 ,获得积分10
12秒前
12秒前
葡萄发布了新的文献求助10
16秒前
21秒前
情怀应助tlx采纳,获得30
24秒前
小蘑菇应助Qiaoguliang采纳,获得10
24秒前
24秒前
29秒前
葡萄完成签到,获得积分10
30秒前
bgim发布了新的文献求助10
33秒前
40秒前
42秒前
42秒前
一周发布了新的文献求助10
45秒前
45秒前
Qiaoguliang发布了新的文献求助10
46秒前
49秒前
lyb1853关注了科研通微信公众号
50秒前
波恰发布了新的文献求助10
51秒前
飞快的孱发布了新的文献求助10
52秒前
56秒前
三三完成签到 ,获得积分0
1分钟前
1分钟前
horizon发布了新的文献求助10
1分钟前
1分钟前
1分钟前
一周完成签到,获得积分10
1分钟前
科研通AI6应助波恰采纳,获得10
1分钟前
1分钟前
轻松熊不轻松完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549098
求助须知:如何正确求助?哪些是违规求助? 4634430
关于积分的说明 14634667
捐赠科研通 4575878
什么是DOI,文献DOI怎么找? 2509325
邀请新用户注册赠送积分活动 1485283
关于科研通互助平台的介绍 1456402