Natural statistics of head roll: implications for Bayesian inference in spatial orientation

作者
Sophie C.M.J. Willemsen,Leonie Oostwoud Wijdenes,Robert J. van Beers,Mathieu Koppen,W. Pieter Medendorp
标识
DOI:10.1101/2022.09.07.506906
摘要

Abstract We previously proposed a Bayesian model of multisensory integration in spatial orientation (1). Using a Gaussian prior, centered on an upright head orientation, this model could explain various perceptual observations in roll-tilted participants, such as the subjective visual vertical, the subjective body tilt (1), the rod-and-frame effect (2), as well as their clinical (3) and age-related deficits (4). Because it is generally assumed that the prior reflects an accumulated history of previous head orientations, and recent work on natural head motion suggests non-Gaussian statistics, we examined how the model would perform with a non-Gaussian prior. In the present study, we first experimentally generalized the previous observations in showing that also the natural statistics of head orientation are characterized by long tails, best quantified as a t -location-scale distribution. Next, we compared the performance of the Bayesian model and various model variants using such a t -distributed prior to the original model with the Gaussian prior on their accounts of previously published data of the subjective visual vertical and subjective body tilt tasks. All of these variants performed substantially worse than the original model, suggesting a special value of the Gaussian prior. We provide computational and neurophysiological reasons for the implementation of such a prior, in terms of its associated precision–accuracy trade-off in vertical perception across the tilt range. New & Noteworthy It has been argued that the brain uses Bayesian computations to process multiple sensory cues in vertical perception, including a prior centered on upright head orientation which is usually taken to be Gaussian. Here, we show that non-Gaussian prior distributions, although more akin to the statistics of head orientation during natural activities, provide a much worse explanation of such perceptual observations than a Gaussian prior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
fer发布了新的文献求助10
1秒前
彭于晏应助chenxxx采纳,获得10
1秒前
良辰应助cookie采纳,获得10
1秒前
1秒前
传奇3应助草莓夹心小饼干采纳,获得10
1秒前
Micheal发布了新的文献求助350
1秒前
小二郎应助卫川影采纳,获得10
2秒前
漂亮忆丹完成签到,获得积分10
3秒前
4秒前
充电宝应助Linda采纳,获得10
4秒前
4秒前
悄悄努力,悄悄拔尖完成签到,获得积分10
4秒前
大yu乐家发布了新的文献求助30
5秒前
5秒前
许ye发布了新的文献求助10
5秒前
linguobin发布了新的文献求助10
5秒前
邱寻绿发布了新的文献求助10
6秒前
n脑子只想吃完成签到,获得积分10
6秒前
旧城以西发布了新的文献求助10
7秒前
lalala应助粗犷的瑛采纳,获得10
7秒前
7秒前
8秒前
9秒前
9秒前
清修发布了新的文献求助10
9秒前
SPark发布了新的文献求助10
9秒前
英勇的碧完成签到,获得积分10
9秒前
zh123完成签到,获得积分10
9秒前
9秒前
加油的老赵完成签到,获得积分10
10秒前
10秒前
毛豆应助禾平采纳,获得10
10秒前
10秒前
叶子小丙完成签到,获得积分10
11秒前
卫川影完成签到,获得积分10
12秒前
12秒前
wanci应助linguobin采纳,获得10
12秒前
无花果应助超速也文章采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308852
求助须知:如何正确求助?哪些是违规求助? 2942301
关于积分的说明 8507956
捐赠科研通 2617252
什么是DOI,文献DOI怎么找? 1430026
科研通“疑难数据库(出版商)”最低求助积分说明 663984
邀请新用户注册赠送积分活动 649215