线粒体生物发生
氧化应激
粒体自噬
神经保护
神经毒性
活性氧
SOD2
内分泌学
线粒体
药理学
线粒体ROS
化学
内科学
医学
自噬
超氧化物歧化酶
细胞凋亡
生物化学
毒性
作者
Islauddin Khan,Preeti Kumari,Rahul Kumar,Dharmendra Kumar Khatri,Shashi Bala Singh
标识
DOI:10.1016/j.intimp.2023.109793
摘要
Piceatannol (PCN), a SIRT1 activator, regulates multiple oxidative stress mechanism and has anti-inflammatory potential in various inflammatory conditions. However, its role in Diabetic insulted peripheral neuropathy (DN) remains unknown. Oxidative stress and mitochondrial dysfunction are major contributing factors to DN. Myriad studies have proven that sirtuin1 (SIRT1) stimulation convalesce nerve functions by activating mitochondrial functions like mitochondrial biogenesis and mitophagy. Diabetic neuropathy (DN) was provoked by injecting streptozotocin (STZ) at a dose of 55 mg/kg, i.p to male Sprague Dawley (SD) rats. Mechanical, thermal hyperalgesia was evaluated by using water immersion, Vonfrey Aesthesiometer, and Randall Sellito Calipers. Motor, sensory nerve conduction velocity was measured using Power Lab 4sp system whereas The Laser Doppler system was used to evaluate nerve blood flow. To induce hyperglycemia for the in vitro investigations, high glucose (HG) (30 mM) conditions were applied to Neuro2a cells. At doses of 5 and 10 µM, PCN was examined for its role in SIRT1 and Nrf2 activation. HG-induced N2A cells, reactive oxygen exposure, mitochondrial superoxides and mitochondrial membrane potentials were restored by PCN exposure, and their neurite outgrowth was enhanced. Peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) directed mitochondrial biogenesis was induced by increased SIRT1 activation by piceatannol. SIRT1 activation also enhanced Nrf2-mediated antioxidant signalling. Our study results inferred that PCN administration can counteract the decline in mitochondrial function and antioxidant activity in diabetic rats and HG-exposed N2A cells by increasing the SIRT1 and Nrf2 activities.
科研通智能强力驱动
Strongly Powered by AbleSci AI