Memory-Net: Coupling feature maps extraction and hierarchical feature maps reuse for efficient and effective PET/CT multi-modality image-based tumor segmentation

计算机科学 特征(语言学) 编码器 卷积神经网络 模式识别(心理学) 模态(人机交互) 人工智能 编码(内存) 分割 解码方法 算法 哲学 语言学 操作系统
作者
Meng Wang,Huiyan Jiang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:265: 110399-110399 被引量:2
标识
DOI:10.1016/j.knosys.2023.110399
摘要

Dense connection (DC), which densely reuses shallow feature maps to boost feature propagation, has been widely used in medical image segmentation models. However, feature aggregation of DC can be redundant, resulting in an expensive computational cost for resource-constrained platforms. To address this problem, we proposed a gated convolutional unit (GCU)-based feature forwarding method. GCU is a modified convolutional long short-term memory (Conv-LSTM) unit. First, we present a gated convolutional module (GCM) by hierarchically stacking GCUs and combining it with UNet architecture to create Memory-Net, wherein the hidden states of GCUs serve as the feature maps and the cell memories throughout the GCM form an information highway, enabling the model to efficiently and selectively aggregate useful information to boost feature propagation. We further combine the GCU with hyperdense connection (HDC) to propose a hyper-gated convolutional unit (HGCU) and develop a novel GCU and HGCU based multi-branch encoder (GCU-HGCU-Encoder), wherein the cell memory of the encoding branch for a specific input modality is not only used within the branch but also across all encoding branches, resulting in more efficient and effective multi-modality information fusion for Memory-Net. For improved segmentation, we introduced a recurrent-dense-Siamese decoder (RDS-Decoder) to create Memory-HDRDS-UNet, which is the final proposal of Memory-Net, by combining a GCU-HGCU-Encoder, a simple RDS-Decoder, and skip layers. We validated the superiority of Memory-Net on PET/CT volumes with lymphomas, and it achieved an average Dice score of 0.8690 and an average sensitivity of 0.9616, outperforming the state-of-the-art methods with a much lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsff发布了新的文献求助10
1秒前
herococa应助李鱼丸采纳,获得10
1秒前
李俊朋完成签到,获得积分10
1秒前
1秒前
zxy完成签到,获得积分10
2秒前
waitingfor发布了新的文献求助10
2秒前
3秒前
明月落乌江关注了科研通微信公众号
5秒前
wqy关注了科研通微信公众号
6秒前
量子星尘发布了新的文献求助10
7秒前
Vicky发布了新的文献求助10
7秒前
高大绝义发布了新的文献求助10
7秒前
万能图书馆应助春和景明采纳,获得10
10秒前
蒲云海发布了新的文献求助30
10秒前
12秒前
13秒前
NexusExplorer应助失眠采白采纳,获得10
15秒前
TM完成签到,获得积分20
16秒前
清爽难胜应助zcbb采纳,获得10
16秒前
17秒前
Vicky完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
下雨收衣服完成签到,获得积分10
22秒前
23秒前
顾矜应助是多多呀采纳,获得10
23秒前
橙汁完成签到 ,获得积分10
24秒前
wqy发布了新的文献求助10
24秒前
俭朴的听寒完成签到,获得积分10
26秒前
Erdong_chen应助风雅采纳,获得10
27秒前
高贵魂幽完成签到,获得积分10
27秒前
搬砖发布了新的文献求助10
28秒前
wyg117完成签到,获得积分10
28秒前
28秒前
29秒前
tsntn完成签到,获得积分10
29秒前
cc应助李鱼丸采纳,获得10
30秒前
小程完成签到,获得积分10
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309