Memory-Net: Coupling feature maps extraction and hierarchical feature maps reuse for efficient and effective PET/CT multi-modality image-based tumor segmentation

计算机科学 特征(语言学) 编码器 卷积神经网络 模式识别(心理学) 模态(人机交互) 人工智能 编码(内存) 分割 解码方法 算法 语言学 操作系统 哲学
作者
Meng Wang,Huiyan Jiang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:265: 110399-110399 被引量:2
标识
DOI:10.1016/j.knosys.2023.110399
摘要

Dense connection (DC), which densely reuses shallow feature maps to boost feature propagation, has been widely used in medical image segmentation models. However, feature aggregation of DC can be redundant, resulting in an expensive computational cost for resource-constrained platforms. To address this problem, we proposed a gated convolutional unit (GCU)-based feature forwarding method. GCU is a modified convolutional long short-term memory (Conv-LSTM) unit. First, we present a gated convolutional module (GCM) by hierarchically stacking GCUs and combining it with UNet architecture to create Memory-Net, wherein the hidden states of GCUs serve as the feature maps and the cell memories throughout the GCM form an information highway, enabling the model to efficiently and selectively aggregate useful information to boost feature propagation. We further combine the GCU with hyperdense connection (HDC) to propose a hyper-gated convolutional unit (HGCU) and develop a novel GCU and HGCU based multi-branch encoder (GCU-HGCU-Encoder), wherein the cell memory of the encoding branch for a specific input modality is not only used within the branch but also across all encoding branches, resulting in more efficient and effective multi-modality information fusion for Memory-Net. For improved segmentation, we introduced a recurrent-dense-Siamese decoder (RDS-Decoder) to create Memory-HDRDS-UNet, which is the final proposal of Memory-Net, by combining a GCU-HGCU-Encoder, a simple RDS-Decoder, and skip layers. We validated the superiority of Memory-Net on PET/CT volumes with lymphomas, and it achieved an average Dice score of 0.8690 and an average sensitivity of 0.9616, outperforming the state-of-the-art methods with a much lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HongqiZhang完成签到 ,获得积分0
刚刚
TRTHHRTZ完成签到,获得积分10
2秒前
xjcy应助粟粟采纳,获得10
2秒前
米花发布了新的文献求助10
2秒前
Xiaoyang完成签到,获得积分10
2秒前
Hello应助光亮的逍遥采纳,获得10
3秒前
人群是那么像羊群完成签到 ,获得积分10
4秒前
我是老大应助吉他平方采纳,获得10
4秒前
舒心傲蕾发布了新的文献求助10
5秒前
qingjiu完成签到,获得积分10
7秒前
歪比八不完成签到,获得积分20
7秒前
spume发布了新的文献求助10
8秒前
9秒前
buno应助高大的友梅采纳,获得10
10秒前
11秒前
11秒前
Xv完成签到,获得积分10
12秒前
12秒前
12秒前
roy_chiang完成签到,获得积分0
12秒前
酷波er应助眯眯眼的青文采纳,获得10
12秒前
13秒前
14秒前
SciGPT应助c123采纳,获得10
15秒前
领导范儿应助若初拾光采纳,获得10
15秒前
16秒前
芦荟柚子呀完成签到,获得积分10
17秒前
傲慢与偏见zz应助故笺采纳,获得10
18秒前
坦率无剑完成签到,获得积分10
18秒前
西番雅发布了新的文献求助10
18秒前
Orange应助虚无采纳,获得10
18秒前
18秒前
19秒前
羽凡余家发布了新的文献求助10
20秒前
jackynl发布了新的文献求助10
20秒前
22秒前
耍酷的丹珍完成签到,获得积分20
22秒前
rrr完成签到,获得积分10
23秒前
斯文败类应助西番雅采纳,获得10
23秒前
DrY发布了新的文献求助10
25秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222621
求助须知:如何正确求助?哪些是违规求助? 2871361
关于积分的说明 8174931
捐赠科研通 2538292
什么是DOI,文献DOI怎么找? 1370440
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619608