Improving transferable adversarial attack via feature-momentum

对抗制 计算机科学 特征(语言学) 可转让性 边距(机器学习) 钥匙(锁) 机器学习 人工智能 数据挖掘 计算机安全 哲学 语言学 罗伊特
作者
Xianglong He,Yuezun Li,Haipeng Qu,Junyu Dong
出处
期刊:Computers & Security [Elsevier BV]
卷期号:128: 103135-103135 被引量:9
标识
DOI:10.1016/j.cose.2023.103135
摘要

Transferable adversarial attackusing adversarial perturbations made on known models to attack unknown modelshas made significant progress in recent years. The feature-level adversarial approach, in particular, is one of the most common solutions and can improve transferability by disrupting intermediate features, regardless of the task-specific loss objectives. Once the intermediate features are disrupted, the subsequent prediction will naturally go wrong. To accomplish this, the existing methods often start an attack by creating a guidance map on features that shows the importance level of each feature element, and then they use an iterative strategy to disrupt the features based on the guidance map. However, the drawback of existing methods is that the guidance map is always fixed in iterations, which can not consistently reflect the importance of feature elements, limiting the performance of the attack consequently. In this paper, we describe a new method called Feature-Momentum Adversarial Attack (FMAA) to enhance transferability. The key idea is that we estimate a guidance map dynamically at each iteration using a momentum-style approach to effectively disturb the features. Extensive experiments demonstrate that our method significantly outperforms other state-of-the-art methods by a large margin on different target models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheng完成签到 ,获得积分0
刚刚
隐形曼青应助晨屿采纳,获得10
刚刚
李玲玲完成签到,获得积分10
刚刚
CipherSage应助00采纳,获得10
2秒前
2秒前
2秒前
wanci应助YY采纳,获得10
3秒前
3秒前
3秒前
gwff发布了新的文献求助10
4秒前
4秒前
5秒前
留猪完成签到,获得积分10
5秒前
Cici发布了新的文献求助10
5秒前
周常通发布了新的文献求助10
5秒前
潇洒的布偶完成签到,获得积分10
5秒前
仁爱绝义发布了新的文献求助10
5秒前
汉堡包应助贵贵采纳,获得10
5秒前
6秒前
稳重安露发布了新的文献求助30
6秒前
6秒前
7秒前
在水一方应助平家boy采纳,获得10
7秒前
专一的吐司完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助30
9秒前
9秒前
9秒前
sensen发布了新的文献求助10
9秒前
上官若男应助Young采纳,获得10
9秒前
9秒前
慕青应助坚果采纳,获得10
10秒前
zhangjiegxf完成签到,获得积分10
10秒前
holland完成签到 ,获得积分10
10秒前
wwww发布了新的文献求助10
10秒前
ycd关闭了ycd文献求助
11秒前
偷喝汽水发布了新的文献求助10
11秒前
lisa完成签到,获得积分10
11秒前
科研通AI2S应助Cici采纳,获得10
12秒前
Zenobia发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3515939
关于积分的说明 11180280
捐赠科研通 3251061
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805209