Improving transferable adversarial attack via feature-momentum

对抗制 计算机科学 特征(语言学) 可转让性 边距(机器学习) 钥匙(锁) 机器学习 人工智能 数据挖掘 计算机安全 语言学 哲学 罗伊特
作者
Xianglong He,Yuezun Li,Haipeng Qu,Junyu Dong
出处
期刊:Computers & Security [Elsevier]
卷期号:128: 103135-103135 被引量:9
标识
DOI:10.1016/j.cose.2023.103135
摘要

Transferable adversarial attackusing adversarial perturbations made on known models to attack unknown modelshas made significant progress in recent years. The feature-level adversarial approach, in particular, is one of the most common solutions and can improve transferability by disrupting intermediate features, regardless of the task-specific loss objectives. Once the intermediate features are disrupted, the subsequent prediction will naturally go wrong. To accomplish this, the existing methods often start an attack by creating a guidance map on features that shows the importance level of each feature element, and then they use an iterative strategy to disrupt the features based on the guidance map. However, the drawback of existing methods is that the guidance map is always fixed in iterations, which can not consistently reflect the importance of feature elements, limiting the performance of the attack consequently. In this paper, we describe a new method called Feature-Momentum Adversarial Attack (FMAA) to enhance transferability. The key idea is that we estimate a guidance map dynamically at each iteration using a momentum-style approach to effectively disturb the features. Extensive experiments demonstrate that our method significantly outperforms other state-of-the-art methods by a large margin on different target models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房山芙完成签到,获得积分10
刚刚
刚刚
刚刚
zgnh完成签到,获得积分10
1秒前
阿北完成签到,获得积分10
1秒前
万能图书馆应助大气迎天采纳,获得10
1秒前
Eva完成签到,获得积分10
1秒前
合适否而非完成签到,获得积分10
1秒前
jkdzp发布了新的文献求助10
2秒前
走过的风发布了新的文献求助10
2秒前
3秒前
田博文应助xuxuxu采纳,获得10
3秒前
3秒前
在水一方应助波波采纳,获得10
3秒前
yanning完成签到,获得积分20
4秒前
4秒前
火星上的诗兰完成签到,获得积分10
4秒前
4秒前
4秒前
桐桐应助聪明萤采纳,获得10
4秒前
4秒前
爆米花应助冉柒采纳,获得10
5秒前
牛马婕完成签到,获得积分10
5秒前
vivre223发布了新的文献求助10
5秒前
文献求助发布了新的文献求助10
5秒前
JJJJJin发布了新的文献求助20
6秒前
jor666发布了新的文献求助20
6秒前
浮游应助sxk采纳,获得10
6秒前
小星星完成签到 ,获得积分10
7秒前
7秒前
傲娇的笑白完成签到 ,获得积分10
7秒前
CipherSage应助硝基采纳,获得10
7秒前
汪进辉_Will完成签到,获得积分10
8秒前
iwww发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
李健应助凤迎雪飘采纳,获得10
9秒前
jaybaggio完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510526
求助须知:如何正确求助?哪些是违规求助? 4605168
关于积分的说明 14493221
捐赠科研通 4540370
什么是DOI,文献DOI怎么找? 2487953
邀请新用户注册赠送积分活动 1470219
关于科研通互助平台的介绍 1442645