Improving transferable adversarial attack via feature-momentum

对抗制 计算机科学 特征(语言学) 可转让性 边距(机器学习) 钥匙(锁) 机器学习 人工智能 数据挖掘 计算机安全 语言学 哲学 罗伊特
作者
Xianglong He,Yuezun Li,Haipeng Qu,Junyu Dong
出处
期刊:Computers & Security [Elsevier]
卷期号:128: 103135-103135 被引量:9
标识
DOI:10.1016/j.cose.2023.103135
摘要

Transferable adversarial attackusing adversarial perturbations made on known models to attack unknown modelshas made significant progress in recent years. The feature-level adversarial approach, in particular, is one of the most common solutions and can improve transferability by disrupting intermediate features, regardless of the task-specific loss objectives. Once the intermediate features are disrupted, the subsequent prediction will naturally go wrong. To accomplish this, the existing methods often start an attack by creating a guidance map on features that shows the importance level of each feature element, and then they use an iterative strategy to disrupt the features based on the guidance map. However, the drawback of existing methods is that the guidance map is always fixed in iterations, which can not consistently reflect the importance of feature elements, limiting the performance of the attack consequently. In this paper, we describe a new method called Feature-Momentum Adversarial Attack (FMAA) to enhance transferability. The key idea is that we estimate a guidance map dynamically at each iteration using a momentum-style approach to effectively disturb the features. Extensive experiments demonstrate that our method significantly outperforms other state-of-the-art methods by a large margin on different target models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邹z完成签到 ,获得积分10
刚刚
1秒前
结实星星发布了新的文献求助10
1秒前
吕洺旭发布了新的文献求助10
3秒前
shame发布了新的文献求助10
3秒前
萧秋灵完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
Akim应助温暖富采纳,获得10
7秒前
独特的高山完成签到 ,获得积分10
8秒前
嘿嘿应助HtObama采纳,获得10
8秒前
8秒前
lmkpx完成签到,获得积分10
8秒前
水木年华发布了新的文献求助10
9秒前
无花果应助凯凯采纳,获得10
9秒前
万能图书馆应助凯凯采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
大个应助Hxbyn采纳,获得20
11秒前
冰安完成签到,获得积分20
12秒前
12秒前
13秒前
xiaoxiao完成签到 ,获得积分10
13秒前
13秒前
ll发布了新的文献求助10
13秒前
嘿嘿应助IceyCNZ采纳,获得20
13秒前
14秒前
彩色孤晴完成签到,获得积分10
14秒前
16秒前
hhhpass发布了新的文献求助20
16秒前
萌娜梨裟发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
结实星星发布了新的文献求助10
19秒前
20秒前
21秒前
多金多金完成签到 ,获得积分10
21秒前
李子完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680022
求助须知:如何正确求助?哪些是违规求助? 4995227
关于积分的说明 15171337
捐赠科研通 4839788
什么是DOI,文献DOI怎么找? 2593645
邀请新用户注册赠送积分活动 1546635
关于科研通互助平台的介绍 1504749